АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Статистическое толкование второго начала термодинамики

Читайте также:
  1. II. Время начала и окончания работы
  2. III. ИСТОЛКОВАНИЕ СМЫСЛА
  3. Адвокатура второй половины XIX — начала XX веков
  4. Английское судопроизводство конца XIX – начала XXвв.
  5. Белорусское культурно-просветительское возрождение конца 19-начала 20вв.
  6. Ведение второго периода родов. Акушерское пособие.
  7. Ведущие шахматисты 50-х – начала 60-х годов
  8. Вклеив один лист, фальсификатор заготовил место для второго, который вскоре «счастливо нашелся»
  9. Вообще, конечно, хотя все понимаешь, сначала очень задевает явная несправедливость происходящего даже в мелочах.
  10. Вопрос №33. «Политические партии в России начала 20 века: генезис, классификация, программы, тактика»
  11. Глава 2. Откуда началась ересь ариан
  12. Глава 4. Дания и Норвегия от начала правления Харальда Синезубого до смерти Олава сына Трюггви (950-1000 гг.)

Энтропия изолированной системы может только возрастать либо оставаться неизменной. dS³0.

Энтропия в термодинамике. Сумма приведённых количеств тепла, полученных системой при переходе из одного состояния в другое не зависит от процесса, при котором это происходит, поэтому dQ/T представляет собой приращение некоторой функции состояния. Эта функция называется энтропией. dS=(dQ/T)обр. Свойства энтропии. 1. dS³dQ/T. 2. Энтропия изолированной системы может только возрастать, так как теплоизолированная система dQ=0, dS³0. 3. Для обратимых процессов dQ=0, dS=0, S=const.

Статистическое толкование энтропии. 1. Энтропия изолированной системы при протекании необратимого процесса возрастает. Действительно изолированная система переходит из менее вероятных в более вероятные состояния, что сопровождается ростом величины S=k×lnW, где W - это статистический вес, то есть количество способов, которым может быть осуществлено данное состояние. 2. Энтропия системы, находящейся в равновесном состоянии, максимальна.

19. Закон Максвелла для распределения молекул идеального газа по скоростям теплового движения. Вероятностное толкование закона распределения Максвелла.

Закон Максвелла для распределения молекул идеального газа по скоростям теплового движения. В 1860 году Максвелл теоретически установил распределение молекул идеального газа по скоростям теплового движения и записал в виде F(v)=f(v)4pv2 и позже получил то, что впоследствии назвал формулой распределения молекул идеального газа по скоростям теплового движения. Она имеет вид F(v)=(m/(2pkT))3/2exp(-mv2/(2kT))4pv2.

http://www.terver.ru/Raspredelenie_Maxvella.php

Вероятностное толкование закона распределения Максвелла. Выражение dNv=Nf(v)4pv2dv даёт число молекул, величина скоростей которых лежит в интервале от v до v+dv. Разделив его на n получим вероятность того, что скорость молекулы окажется между v и v+dv, то есть dPv=f(v)4pv2dv.

20. Барометрическая формула. Закон Больцмана для распределения частиц идеального газа во внешнем потенциальном поле.

Барометрическая формула. p=p0exp(-(Mgh)/(RT)). Эта формула называется барометрической. Из неё следует, что давление убывает с высотой тем быстрее, чем тяжелее газ (чем больше M) и чем ниже температура.

Закон Больцмана для распределения частиц идеального газа во внешнем потенциальном поле. n=n0exp(-ep/(kT)) Больцман доказал, что это распределение справедливо не только в случае потенциальных сил земного тяготения, но и в любом потенциальном поле сил совокупности любых одинаковых частиц, находящихся в состоянии хаотического движения. В соответствии с этим это распределение было названо законом Больцмана для распределения частиц идеального газа во внешнем потенциальном поле.

21. Среднее число столкновений и средняя длина свободного пробега молекул идеального газа. Эффективный диаметр молекулы.

Между двумя последовательными столкновениями молекулы проходят некоторый путь l, называемым длиной свободного пробега. В общем случае длина пути между последовательными столкновениями различна, но так как мы имеем дело с очень большим числом молекул и они находятся в беспорядочном движении, то можно говорить о средней длине свободного пробега молекул < l >.

Минимальное расстояние, на которое сближаются при столкновении центры двух молекул, называется эффективным диаметром молекулы d. Он зависит от скорости сталкивающихся молекул, т. е. от температуры газа (несколько уменьшается с ростом температуры).

Так как за 1 с молекула в среднем проходит путь, который равен средней арифметической скорости <v>, и если < z > — среднее число столкновений, которые одна молекула газа делает за 1 с, то средняя длина свободного пробега будет

Среднее число столкновений за 1 с равно числу молекул в объеме, так называемого ломаного цилиндра:

где n — концентрация молекул, V = πd2<v>,где <v> — средняя скорость молекулы или путь, пройденным ею за 1 с). Таким образом, среднее число столкновений

Расчеты показывают, что при учете движения других молекул

Тогда средняя длина свободного пробега

т. е. < l > обратно пропорциональна концентрации n молекул. С другой стороны, p=nkt. Значит,

22. Явления переноса. Теплопроводность, диффузия, вязкость.

Теплопроводность — это перенос теплоты структурными частицами вещества (молекулами, атомами, электронами) в процессе их теплового движения.

Численная характеристика теплопроводности материала равна количеству теплоты, проходящей через материал толщиной 1 м и площадью 1 кв.м за час при разности температур на двух противоположных поверхностях в 1 К.

Диффузия ‑ взаимное проникновение соприкасающихся веществ друг в друга вследствие теплового движения частиц вещества. Диффузия происходит в направлении падения концентрации вещества и ведёт к равномерному распределению вещества по всему занимаемому им объёму.

Вязкость ‑ свойство газов и жидкостей оказывать сопротивление необратимому перемещению одной их части относительно другой при сдвиге, растяжении и др. видах деформации. Вязкость характеризуют интенсивностью работы, затрачиваемой на осуществление течения газа или жидкости с определенной скоростью.

23. Реальные газы. Силы и потенциальная энергия межмолекулярного взаимодействия. Уравнение Ван-дер-Ваальса. Изотермы реального газа. Критическое состояние. (Внутренняя энергия реального газа.)

Реальные газы. Поведение реальных газов хорошо описывается уравнением pVM=RT только при слабых силах межмолекулярного взаимодействия. Реальный газ - это газ, между молекулами которого существуют заметные силы межмолекулярного взаимодействия. Для описания свойств реального газа используются уравнения, отличающиеся от уравнения Клаперона-Менделеева.


1 | 2 | 3 | 4 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)