АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Способы реализации нейронных сетей

Читайте также:
  1. I. Способы, связанные с управлением дыханием
  2. III. Требования к условиям реализации основной образовательной программы дошкольного образования
  3. V. Ожидаемые результаты реализации Программы
  4. V. Способы и методы обеззараживания и/или обезвреживания медицинских отходов классов Б и В
  5. Амплитудно-частотная характеристика и способы ее измерения
  6. Анализ объема реализации и выполнения договоров поставки.
  7. Анализ отгрузки и реализации продукции.
  8. Анализ показателей производства и реализации продукции
  9. Анализ производства и реализации продукции.
  10. Анализ реализации продукции
  11. Анализ структуры реализации возможностей компании и состояния действующей АЗС
  12. Анализ факторов и резервов увеличения выпуска и реализации продукции

Нейронные сети могут быть реализованы двумя путями: первый - это программная модель НС, второй - аппаратная. Основными коммерческими аппаратными изделиями на основе НС являются и, вероятно, в ближайшее время будут оставаться нейроБИС.

 
 

Рисунок 6. Обобщенная классификация нейрочипов

 

Среди разрабатываемых в настоящее время нейроБИС выделяются модели фирмы Adaptive Solutions (США) и Hitachi[4]. НейроБИС фирмы Adaptive Solutions, вероятно, станет одной из самых быстродействующих: объявленная скорость обработки составляет 1,2 млрд. соединений/с. (НС содержит 64 нейрона и 262144 синапса). НейроБИС фирмы Hitachi позволяет реализовать НС, содержащую до 576 нейронов. Эти нейроБИС, несомненно, станут основой новых нейрокомпьютеров и специализированных многопроцессорных изделий.

Большинство сегодняшних нейрокомпьютеров представляют собой просто персональный компьютер или рабочую станцию, в состав которых входит дополнительная нейроплата. К их числу относятся, например, компьютеры серии FMR фирмы Fujitsu. Такие системы имеют бесспорное право на существование, поскольку их возможностей вполне достаточно для разработки новых алгоритмов и решения большого числа прикладных задач методами нейроматематики.

Однако наибольший интерес представляют специализированные нейрокомпьютеры, непосредственно реализующие принципы НС. Типичными представителями таких систем являются компьютеры семейства Mark фирмы TRW (первая реализация перцептрона, разработанная Розенблатом, называлась Mark I).

Модель Mark III фирмы TRW представляют собой рабочую станцию, содержащую до 15 процессоров семейства Motorola 68000 с математическими сопроцессорами. Все процессоры объединены шиной VME. Архитектура системы, поддерживающая до 65 000 виртуальных процессорных элементов с более чем 1 млн. настраиваемых соединений, позволяет обрабатывать до 450 тыс. межсоединений/с.

Mark IV - это однопроцессорный суперкомпьютер с конвейерной архитектурой. Он поддерживает до 236 тыс. виртуальных процессорных элементов, что позволяет обрабатывать до 5 млн. межсоединений/с.

Компьютеры семейства Mark имеют общую программную оболочку ANSE (Artificial Neural System Environment), обеспечивающую программную совместимость моделей.

Помимо указанных моделей фирмы TRW предлагает также пакет Mark II - программный эмулятор НС.

Другой интересной моделью является нейрокомпьютер NETSIM, созданный фирмой Texas Instruments на базе разработок Кембриджского университета. Его топология представляет собой трехмерную решетку стандартных вычислительных узлов на базе процессоров 80188. Компьютер NETSIM используется для моделирования таких моделей НС, как сеть Хопфилда - Кохонена и НС с обратным распространением. Его производительность достигает 450 млн. межсоединений/с.

Фирма Computer Recognitiion Systems (CRS) продает серию нейрокомпьютеров WIZARD/CRS 1000, предназначенных для обработки видеоизображений. Размер входной изображения 512 x 512 пиксел. Модель CRS 1000 уже нашла применение в промышленных системах автоматического контроля.

Нейрокомпьютеры являются перспективным направлением развития современной высокопроизводительной вычислительной техники, а теория нейронных сетей и нейроматематика представляют собой приоритетные направления российской вычислительной науки. Основой активного развития нейрокомпьютеров является принципиальное отличие нейросетевых алгоритмов решения задач от однопроцессорных, малопроцессорных, а также транспьютерных. Для данного направления развития вычислительной техники не так важен уровень развития отечественной микроэлектроники, поэтому оно позволяет создать основу построения российской элементной базы суперкомпьютеров.

В России уже успешно функционирует один из первых мощных нейрокомпьютеров для финансового применения - CNAPS PC/128 на базе 4-х нейроБИС фирмы Alaptive Solutions. По данным фирмы "Торацентр" в число организаций, использующих нейронные сети для решения своих задач, уже вошли: Центробанк, МЧС, Налоговая Инспекция, более 30 банков и более 60 финансовых компаний [ 4 ].


Заключение

Нейрокомпьютеры являются перспективным направлением развития современной высокопроизводительной вычислительной техники, а теория нейронных сетей и нейроматематика представляют собой приоритетные направления российской вычислительной науки. Основой активного развития нейрокомпьютеров является принципиальное отличие нейросетевых алгоритмов решения задач от однопроцессорных, малопроцессорных, а также транспьютерных. Для данного направления развития вычислительной техники не так важен уровень развития отечественной микроэлектроники, поэтому оно позволяет создать основу построения российской элементной базы суперкомпьютеров.

В России уже успешно функционирует один из первых мощных нейрокомпьютеров для финансового применения - CNAPS PC/128 на базе 4-х нейроБИС фирмы Alaptive Solutions. По данным фирмы "Торацентр" в число организаций, использующих нейронные сети для решения своих задач, уже вошли: Центробанк, МЧС, Налоговая Инспекция, более 30 банков и более 60 финансовых компаний.

Нейронные сети возникли из исследований в области искусственного интеллекта, а именно, из попыток воспроизвести способность биологических нервных систем обучаться и исправлять ошибки. Такие системы основывались на высокоуровневом моделировании процесса мышления на обычных компьютерах. Скоро стало ясно, чтобы создать искусственный интеллект, необходимо построить систему с похожей на естественную архитектурой, т.е. перейти от программной реализации процесса мышления к аппаратной. Естественным продолжением аппаратного и программного подхода к реализации нейрокомпьютера является программно-аппаратный подход. Аппаратный подход связан с созданием нейрокомпьютеров в виде нейроподобных структур (нейросетей) электронно-аналогового, оптоэлектронного и оптического типов. Для таких компьютеров разрабатываются специальные СБИС (нейрочипы). Основу нейросетей составляют относительно простые, в большинстве случаев - однотипные, элементы (ячейки), имитирующие работу нейронов мозга - искусственные нейроны. Нейрон обладает группой синапсов - однонаправленных входных связей, соединенных с выходами других нейронов, а также имеет аксон - выходную связь данного нейрона, с которой сигнал (возбуждения или торможения) поступает на синапсы следующих нейронов. Каждый синапс характеризуется величиной синаптической связи или ее весом, который по физическому смыслу эквивалентен электрической проводимости в электрических связях [ 5 ].

Для решения отдельных типов задач существуют оптимальные конфигурации нейронных сетей. Если же задача не может быть сведена ни к одному из известных типов, разработчику приходится решать сложную проблему синтеза новой конфигурации. При этом он руководствуется несколькими основополагающими принципами: возможности сети возрастают с увеличением числа ячеек сети, плотности связей между ними и числом слоев нейронов. Одной из важных особенностью нейронной сети является возможность к обучению. Обучение нейросети может вестись с учителем или без него. В первом случае сети предъявляются значения как входных, так и желательных выходных сигналов, и она по некоторому внутреннему алгоритму подстраивает веса своих синаптических связей. Во втором случае выходы нейросети формируются самостоятельно, а веса изменяются по алгоритму, учитывающему только входные и производные от них сигналы.

После обучения на достаточно большом количестве примеров можно использовать обученную сеть для прогнозирования, предъявляя ей новые входные значения. Это важнейшее достоинство нейрокомпьютера, позволяющие ему решать интеллектуальные задачи, накапливая опыт.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)