АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Компоненты и фазы в системе железо-углерод

Читайте также:
  1. GG ДРУГИЕ ОТХОДЫ, СОДЕРЖАЩИЕ В ОСНОВНОМ НЕОГРАНИЧЕСКИЕ КОМПОНЕНТЫ, КОТОРЫЕ МОГУТ СОДЕРЖАТЬ МЕТАЛЛЫ И ОРГАНИЧЕСКИЕ МАТЕРИАЛЫ
  2. S: Минимальный налог при упрощенной системе налогообложения - это
  3. Анализ показателей рентабельности производства в системе директ-костинг
  4. Архитектурное выражение, архитектурный язык – ключевые компоненты архитектуры. Понятия.
  5. АС ОТХОДЫ, СОДЕРЖАЩИЕ В ОСНОВНОМ ОРГАНИЧЕСКИЕ КОМПОНЕНТЫ, КОТОРЫЕ МОГУТ СОДЕРЖАТЬ МЕТАЛЛЫ И НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ
  6. Аудиторский риск и его компоненты.
  7. Афганистан в системе региональных отношений после Первой мировой войны
  8. Баланс активных мощностей в системе
  9. Банковский маркетинг в системе управления банковской деятельностью
  10. Бухгалтерский учет в системе управления предприятием. Методы и принципы бухгалтерского учета. Минкова.
  11. В системе автоблокировки применяется линейное реле «Л» типа...
  12. в системе дополнительного образования детей»

Компонентами железоуглеродистых сплавов являются железо, углерод и цементит.

1. Железоd- переходный металл серебристо-светлого цвета. Температура плавления – 1539° С. Удельный вес равен 7,86 г/см3.

Наиболее существенной особенностью железа является его полиморфизм. В твердом состоянии железо может находиться в двух модификациях - a и γ. Полиморфные превращения происходят при температурах 911° С и 1392° С. При температуре ниже 911° С и выше 1392° С существует Fea (или α-Fе) с объемно-центрированной кубической решеткой. В интервале температур 911…1392° С устойчивым является Feγ (или γ-Fе) с гранецентрированной кубической решеткой. При превращении α→γ наблюдается уменьшение объема, так как решетка γ-Fе имеет более плотную упаковку атомов, чем решетка α-Fе. При охлаждении во время превращения γ→α наблюдается увеличение объема. В интервале температур 1392…1539° С высокотемпературное Fea называют Feδ. Высокотемпературная модификация Fea не представляет собой новой аллотропической формы.

При температуре ниже 768° С железо ферромагнитно, а выше – парамагнитно. Точку 768° С, соответствующую магнитному превращению, т.е. переходу из ферромагнитного состояния в парамагнитное называют точкой Кюри. Модификация Feγ парамагнитна.

Железо технической чистоты обладает невысокой твердостью (80 НВ) и прочностью (временное сопротивление – σв = 250 МПа, предел текучести – σТ = 120 МПа) и высокими характеристиками пластичности (относительное удлинение – δ =50 %, а относительное сужение – ψ = 80 %). Свойства могут изменяться в некоторых пределах в зависимости от величины зерна. Железо характеризуется высоким модулем упругости, наличие которого проявляется и в сплавах на его основе, обеспечивая высокую жесткость деталей из этих сплавов.

Железо со многими элементами образует растворы: с металлами – растворы замещения, с углеродом, азотом и водородом – растворы внедрения.

2. Углерод относится к неметаллам. Обладает полиморфным превращением, в зависимости от условий образования существует в форме графита с гексагональной кристаллической решеткой (температура плавления – 3500° С, плотность – 2,5 г/см3) или в форме алмаза со сложной кубической решеткой с координационным числом равным четырем (температура плавления 5000 ° С).

В сплавах железа с углеродом углерод находится в состоянии твердого раствора с железом и в виде химического соединения – цементита (Fe3C), а также в свободном состоянии в виде графита (в серых чугунах).

3. Цементит (Fe3C) – химическое соединение железа с углеродом (карбид железа), содержит 6,67 % углерода. Более точные исследования показали, что цементит может иметь переменную концентрацию углерода. Однако в дальнейшем, при разборе диаграммы состояния, сделаем допущение, что Fе3С имеет постоянный состав. Кристаллическая решетка цементита ромбическая, удельный вес 7,82 г/см3 (очень близок к удельному весу железа). При высоких температурах цементит диссоциирует, поэтому температура его плавления неясна и проставляется ориентировочно – 1260° С.

Аллотропических превращений не испытывает. Кристаллическая решетка цементита состоит из ряда октаэдров, оси которых наклонены друг к другу. При низких температурах цементит слабо ферромагнитен, магнитные свойства теряет при температуре около 210° С. Цементит имеет высокую твердость (более 800 НВ, легко царапает стекло), но чрезвычайно низкую, практически нулевую, пластичность.

Цементит способен образовывать твердые растворы замещения. Атомы углерода могут замещаться атомами неметаллов: например, азотом; атомы железа – металлами: марганцем, хромом, вольфрамом и др. Такой твердый раствор на базе решетки цементита называется легированным цементитом.

Если графит является стабильной фазой, то цементит – это метастабильная фаза. Цементит – соединение неустойчивое и при определенных условиях распадается с образованием свободного углерода в виде графита. Этот процесс имеет важное практическое значение при структурообразовании чугунов.

В системе железо – углерод существуют следующие фазы: жидкая фаза, феррит, аустенит, цементит, графит.

1. Жидкая фаза. В жидком состоянии железо хорошо растворяет углерод в любых пропорциях с образованием однородной жидкой фазы.

2. Феррит (Ф, a)- твердый раствор внедрения углерода в a-железе (от латинского слова ferrum – железо). Различают низкотемпературный феррит с предельной растворимостью углерода 0,02 % при температуре 727° С (точка P) и высокотемпературный δ-феррит (в интервале температур 1392…1539° С) с предельной растворимостью углерода 0,1 % при температуре 1499° С (точка J).

Свойства феррита близки к свойствам железа. Он мягок (твердость – 130 НВ, временное сопротивление – σв = 300 МПа) и пластичен (относительное удлинение - δ =50 %), магнитен до 768° С.

3. Аустенит (А, γ) – твердый раствор внедрения углерода в γ –железо (по имени английского ученого Р. Аустена). Углерод занимает место в центре гранецентрированной кубической ячейки. Предельная растворимость углерода в γ -железе 2,14 % при температуре 1147° С (точка Е). Аустенит имеет твердость 200…250 НВ, пластичен (относительное удлинение – δ =40…50 %), парамагнитен.

При растворении в аустените других элементов могут изменяться свойства и температурные границы существования.

4. Цементит – характеристика дана выше.

В железоуглеродистых сплавах присутствуют фазы: цементит первичный, цементит вторичный, цементит третичный. Химические и физические свойства этих фаз одинаковы. Влияние на механические свойства сплавов оказывает различие в размерах, количестве и расположении этих выделений. Цементит первичный выделяется из жидкой фазы в виде крупных пластинчатых кристаллов. Цементит вторичный выделяется из аустенита и располагается в виде сетки вокруг зерен аустенита (при охлаждении – вокруг зерен перлита). Цементит третичный выделяется из феррита и в виде мелких включений располагается у границ ферритных зерен.

5. Графит - характеристика дана выше.

Поскольку углерод в сплавах с железом встречается в виде цементита и графита, существуют две диаграммы состояния, описывающие условия равновесия фаз в системах железо - цементит и железо - графит. Первая диаграмма (Fе — Fе3С) называется цементитной (метастабильная), вторая (Fе - С) - графитной (стабильная). Оба варианта диаграммы приводятся вместе в одной системе координат: температура - содержание углерода (рис. 1). Диаграмма состояния системы железо - углерод построена по результатам многочисленных исследований, проведенных учеными ряда стран.

Особое место среди них занимают работы Д.К. Чернова. Он открыл существование критических точек в стали, определил их зависимость от содержания углерода, заложил основы для построения диаграммы состояния железоуглеродистых сплавов в ее нижней, наиболее важной части.

Буквенное обозначение узловых точек в диаграмме является общепринятым как в России, так и за рубежом.

 

Рис. 1. Общий вид диаграммы состояния системы железо - углерод.

2. Система железо — цементит (Fe — Fе3С)

Диаграмма состояния системы железо - цементит изображена на рис. 2. Данные о точках диаграммы приведены в табл. 1.

 

Рис. 2. Диаграмма состояния системы железо - цементит.

 

Имеющиеся во всех областях диаграммы фазы видны на рис. 2. Значение всех линий указано в табл. 2.

Ликвидус по всей диаграмме проходит по линиям АВ, ВС, СD; солидус - по линиям АН, НJ, JЕ, ЕСF. Сплавы железа с углеродом обычно делят на стали и чугуны. Условной границей для такого деления является 2,14 % С (точка E). Сплавы, содержащие углерода менее 2,14 %, относятся к сталям, более 2,14 % - к чугунам.

Температуры, при которых происходят фазовые и структурные превращения в сплавах системы железо – цементит, т.е. критические точки, имеют условные обозначения. Обозначаются буквой А. В зависимости от того, при нагреве или при охлаждении определяется критическая точка, к букве А добавляется индекс с (от слова chauffage – нагрев) при нагреве и индекс r (от слова refroidissement – охлаждение) при охлаждении с оставлением цифры, характеризующей данное превращение.

Таким образом, например, нагрев доэвтектоидной стали выше соответствующей точки на линии СS обозначается как нагрев выше точки АС3. При охлаждении же этой стали первое превращение должно быть обозначено как Аr3, второе (на линии РSК) - как Аr1.

Таблица 1

Узловые точки диаграммы состояния системы Fе — Fе3С

Обозначение точки t,°С С,% Значение точки
А     Плавление (кристаллизация) чистого железа
N     Полиморфное превращение δ«γ в чистом железе
G     Полиморфное превращение α«γ в чистом железе
Н   0,1 δ - твердый раствор, предельно насыщенный углеродом. Участвует в перитектическом превращении
J (I)   0,16 Аустенит, возникающий в результате перитектического превращения
В   0,51 Жидкая фаза, участвующая в перитектическом превращении
D   6,67 Предполагаемая температура плавления Fе3С
Е   2,14 Аустенит, предельно насыщенный углеродом
С   4,3 Жидкая фаза, испытывающая эвтектическое превращение
F   6,67  
P   0,02 Феррит, предельно насыщенный углеродом
S   0,8 Аустенит, испытывающий эвтектоидное превращение
K   6,67  
Q   0,006 Феррит, предельно насыщенный углеродом

Значение линий диаграммы состояния системы Fе — Fе3С

Таблица 2

Линии Значение линии
АВ АН ВС J(I)Е СD НJВ ЕCF РSK (А1) HN   JN (А4)   ЕS (Аcm)     GS (А3)     GP PQ   МО (А2) Ликвидус для δ - твердого раствора Солидус для δ - твердого раствора Ликвидус для аустенита Солидус для аустенита Ликвидус для цементита (первичного) Перитектическое превращение: δн+LвγJ Эвтектическое превращение: LсЕ +3С) Эвтектоидное превращение: γS( αP+ Fе3С) Начало полиморфного превращения δγ в сплавах при охлаждении Конец полиморфного превращения δγ в сплавах при охлаждении Линия предельной растворимости углерода в γ - Fе. Начало выделения цементита (вторичного) из аустенита при охлаждении Начало аллотропического превращения γ → α в сплавах при охлаждении. Начало выделения феррита из аустенита при охлаждении Линия предельной растворимости углерода в α - Fе Начало выделения цементита (третичного) из феррита при охлаждении Переход из ферромагнитного в парамагнитное состояние (768ºС, т. Кюри)

Прежде чем перейти к непосредственному разбору на конкретных примерах процессов фазовых превращений, совершающих в различных сплавах при их охлаждении и нагреве, необходимо сделать следующие замечания.

Всякая диаграмма состояния показывает условия равновесного сосуществования фаз во взятой системе компонентов.

Составы фаз при любой температуре удовлетворяют значениям, определяемым по сопряженным кривым только при условии установившегося физико-химического равновесия и при наличии плоской границы раздела фаз, т. е. при бесконечно большом радиусе кривизны этой поверхности. Если же поверхности раздела контактирующих фаз имеют иной (меньший) радиус кривизны, то создаются иные условия равновесия, в связи с чем изменяется взаимный ход соответствующей сопряженной пары кривых.

Полное физико-химическое равновесие между фазами может быть достигнуто только в специальных лабораторных условиях, а на практике некоторым приближением к этому состоянию может быть случай чрезвычайно медленного охлаждения или нагрева сплава с весьма длительными выдержками во времени при любых искомых температурах.

Условимся, что при разборе сплавов в процессе их превращения при нагреве или охлаждении каждое фиксируемое состояние фаз соответствует равновесному, вытекающему из соответствующих кривых, причем для взятой температуры найденные составы будут относиться ко всему объему фаз, а не только к пограничным контактирующим слоям, где фазовое равновесие устанавливается практически очень быстро. Кроме того, известно, что при всяком фазовом превращении происходит возникновение зародышевых центров и последующий их рост.

При этом термодинамика учит, что зародышевые центры, способные к дальнейшему росту, т. е. к развитию фазового превращения, могут возникать в исходной материнской фазе не при предельной температуре, определяемой по кривым диаграммы, где фазы находятся в равновесии, а при температуре несколько меньшей, т. е. при наличии некоторого переохлаждения.

Поэтому, когда будем говорить о том, что по достижении какой-то линии диаграммы при нагреве или при охлаждении начинается фазовое превращение, то это надо понимать условно, т.е., что они совершаются в «идеальных» условиях.

21. Анализ диаграммы состояния Fe-Fe3C

27. Графитизация чугуна

Графитизация чугуна — выделение углерода в структурно-свободном виде, сопровождающееся частичным или полным разложением цементита. Это основной технологический процесс, формирующий структуру чугуна и его свойства. От того, как протекал процесс графитизации, зависит не только количество, форма и распределение графита в структуре, но и вид металлической основы (матрицы) чугуна, которая может быть перлитно-цементитной, перлитной, перлитно-ферритной, ферритной. Такие элементы как углерод, кремнйй, никель, кобальт, медь способствуют графитизации чугуна, а сера, ванадий, хром, олово, молибден, марганец препятствуют этому процессу. Наибольшее графитизирующее действие оказывают углерод и кремний, наименьшее — кобальт и медь. Графитизация повышает износостойкость изделий, но иногда снижает прочность и пластичность. Графитизацию железных сплавов используют при получении изделий из ковкого чугуна и графитизированной подшипниковой и штамповой стали.

Графитизацией называется процесс кристаллизации (выделения) графита в сплавах железа с углеродом. Графит может кристаллизоваться (выделяться) как из жидкой фазы при затвердевании чугуна. так и из твердой фазы (из аустенита) Основной движущей силой процесса графитизации является стремление вещества к наименьшему запасу свободной энергии. Схема изменения свободной энергии жидкого сплава, цементита и графита. повышении температуры показывает, что выше температуры наименьшей свободной энергией обладает жидкий сплав. Ниже температуры, меньшей в сравнении с жидким сплавом, свободной энергией обладают и графит, и цементит, но, так как кривая свободной энергии для цементита проходит выше кривой для графита, сначала будет выделяться цементит, который затем будет превращаться в графит, обладающий меньшим запасом свободной энергии. Однако, согласно диаграмме состояния сплавов железо — графит, разница между температурами, соответствующими линиям, будет 1135—1130°, т. е. всего 5°, поэтому при сравнительно незначительном переохлаждении будет происходить кристаллизация не графита, а цементита. При повышенном содержании углерода и кремния, расширяющем температурный интервал графитизации, и при медленном охлаждении, происходящем в крупных отливках, непосредственная кристаллизация графита из жидкого сплава облегчается.

Процесс графитизации чугуна совершается путем дислокационного механизма и сводится к образованию центров графитизацив и роста вокруг них графитных включений. Дислокации и точечные дефекты решетки играют при этом большую роль. Графитизация чугуна из жидкой фазы происходит согласие диаграмме графитной системы. Если при затвердевании и охлаждении сплавов железа с углеродом графит не успевает выделяться и образуется цементит, то графитизация в определенных условиях может происходить в твердом состоянии через аустенит и состоит из следующих накладывающихся друг на друга элементарных процессов:

1) распад цементита и растворение атомов углерода в аустените;

2) образование центров графитизации в аустените;

3) диффузия атомов углерода в аустените к центрам графитизации;

4) рост кристаллов (включений) графита.

40. Закалка и ее разновидности

Зака́лка — вид термической обработки материалов (металлы, их сплавы, стекло), заключающийся в их нагреве выше критической температуры (температуры изменения типа кристаллической решетки, т. е. полиморфного превращения, либо температуры, при которой в матрице растворяются фазы, существующие при низкой температуре), с последующим быстрым охлаждением.]Закалку металла для получения избытка вакансий не следует смешивать с обычной закалкой, для проведения которой необходимо, чтобы были возможные фазовые превращения в сплаве.

Чаще всего охлаждение осуществляется в воде или масле, но существуют и другие способы охлаждения: в псевдокипящем слое твёрдого теплоносителя, струёй сжатого воздуха, водяным туманом, в жидкую полимерную закалочную среду.

Различают закалку с полиморфным превращением, для сталей, и закалку без полиморфного превращения, для большинства цветных металлов.

Материал, подвергшийся закалке приобретает бо́льшую твердость, но становится хрупким, менее пластичным и менее вязким, если сделать большее количество повторов нагревание-охлаждение. Для снижения хрупкости и увеличения пластичности и вязкости, после закалки с полиморфным превращением применяют отпуск. После закалки без полиморфного превращения применяют старение. При отпуске имеет место некоторое снижение твердости и прочности материала. [2]

В зависимости от температуры нагрева, закалку подразделяют на полную и неполную. В случае полной закалки материал нагревают на 30 - 50°С выше линии GS для доэвтектоидной стали и эвтектоидной, заэвтектоидная линия PSK (см. диаграмму железоуглеродистых сплавов), в этом случае сталь приобретает структуру аустенит и аустенит + цементит. При неполной закалке производят нагрев выше линии PSK диаграммы, что приводит к образованию избыточных фаз по окончании закалки. Неполная закалка, как правило, применяется для инструментальных с Закалка – это термообработка, направленная на получение в сплаве максимально неравновесной структуры и соответственно аномального уровня свойств. Любая закалка включает в себя нагрев до заданной температуры, выдержку и последующее быстрое резкое охлаждение. В зависимости от вида фазовых превращений, происходящих в сплаве при закалке, различают закалку с полиморфным превращением и закалку без полиморфного превращения.

Закалка с полиморфным превращением. Этот вид закалки применяется для сплавов, в которых один из компонентов имеет полиморфные превращения.

При закалке с полиморфным превращением нагрев металла производится до температуры, при которой происходит смена типа кристаллической решетки в основном компоненте. Образование высокотемпературной полиморфной структуры сопровождается увеличением растворимости легирующих элементов. Последующее резкое охлаждение ведет к обратному изменению типа кристаллической решетки, однако из-за быстрого охлаждения в твердом растворе остается избыточное содержание атомов других компонентов, поэтому после такого охлаждения образуется неравновесная структура. В металле сохраняются внутренние напряжения. Они вызывают резкое изменение свойств, увеличивается прочность, уменьшается пластичность. При быстром охлаждении перестройка кристаллической решетки происходит за счет одновременного смещения целы групп атомов. В результате вместо обычных зерен в металле появляется игольчатая структура, которая называется мартенситом. Неравновесное состояние металла после такого типа закалки является термодинамически неустойчивым. Поэтому, чтобы перевести металл в более устойчивое состояние, получить необходимый уровень внутренних напряжений, а соответственно и необходимые механические свойства, применяют дополнительную термообработку, которую называют отжиг.

Закалка без полиморфного превращения.

Применяется для сплавов, не испытывающих полиморфных превращений, но имеющих ограниченную растворимость одного компонента в другом.

Если сплав, содержащий вторичные фазы, нагреть до температуры выше линии солидус, то увеличение растворимости приведет к растворению вторичных фаз. Если теперь такой твердый раствор быстро охладить, то выделение вторичных фаз образоваться не успеет, т.к. для этого требуется время на прохождение процесса диффузии, образование другой кристаллической решетки, границ раздела между фазами. В результате, при нормальной температуре пересыщенный метастабильный твердый раствор содержит избыток второго компонента. Такое изменение структуры изменяет свойства сплава, прочность может, как увеличиться, так и уменьшиться, а пластичность, как правило, увеличивается. Состояние металла после такой закалки является термодинамически неустойчивым. Самопроизвольно или под влиянием предварительного нагрева метастабильный твердый раствор начинает распадаться с выделением вторичной фазы, т.е. αм®α+βІІ. Этот процесс называется старением. Таким образом, старение – это термообработка, которая проводится после закалки без полиморфного превращения, направленная на получение в сплаве более равновесной структуры и заданного уровня свойств.талей

Закалка сталей.

Закалкой называют термообработку, включающую в себя нагрев сталей до температур выше критических и быстрое, резкое охлаждение, с целью получения высокой прочности и твердости. Различают закалки объемную и поверхностную. При объемной закалке нагревают и охлаждают весь объем детали, при поверхностной – только поверхность.

В зависимости от температуры нагрева закалка бывает полной и неполной. При полной закалке сталь нагревают выше точки А3. Полная закалка применяется для доэвтектоидной стали. В этом случае при нагреве выше точки А3 сталь имеет полностью аустенитную структуру и после резкого охлаждения имеет полностью мартенситную структуру. При неполной закалке полного превращения не будет, и оставшийся в структуре феррит не даст получить высокой твердости и прочности. Поэтому в доэвтектоидной стали неполную закалку не применяют. Для заэвтектоидной стали применяют только неполную закалку. В этом случае вторичный цементит, который сохраняется в стали, дополнительно повышает твердость закаленных сталей. Если же применить полную закалку, то вторичный цементит растворяется в аустените. Это сопровождается резким увеличением зерна. После охлаждения в такой стали будет большое количество остаточного аустенита. Это дополнительно уменьшит твердость стали, поэтому для заэвтектоидной стали полная закалка никогда не применяется. Выдержка при закалке стали должна быть такой, чтобы успели пройти все структурные и фазовые превращения. Однако она не должна быть чрезмерной, чтобы не вызвать роста аустенитного зерна. Обычно ориентировочно выдержку детали принимают из расчета 1 минуту на 1 миллиметр толщины для нагрева и + 1 минута на 1 миллиметр толщины для выравнивания температуры по сечению и прохождения всех структурах и фазовых превращений. Охлаждение при закалке должно быть резким, для того, чтобы не допустить образования перлита, но в то же время – максимально медленным, чтобы уменьшить уровень внутренних напряжений, образующихся в деталях при резком охлаждении. Внутренние напряжения должны быть термические и структурные. Термические возникают из-за неодинаковой скорости охлаждения поверхности и центров массивных деталей, а также при неодинаковой скорости охлаждения тонких и толстых сечений детали.

Структурные напряжения возникают из-за объемного эффекта (v ↑) при переходе А→ М. В зависимости от содержания углерода этот объемных эффект достигает 5-6%. Уровень внутренних напряжений может быть настолько велик, что в результате происходит искажение формы детали или ее растрескивание.

Охлаждение при закалке может вестись в предельных средах (вода, масло минеральное, водо-воздушные смеси). От скорости охлаждения зависит структура, которая в стали после закалки. Если скорость недостаточная, то получает перлитная структура. Они отличаются друг от друга различным размером частиц перлита и цементита. Если скорость охлаждения при закалке достаточно велика, для того, чтобы не образовался перлит, но слишком мала для образования мартенсита в сталях, появится промежуточная структура – бейнит. Внешне она имеет игольчатую структуру как мартенсит, но сами иглы представляют собой феррит, внутри которого выделяется мельчайшие частицы цемента. Если скорость охлаждается стали превышает критическую скорость, то образуется в мартенсит, обеспечивающий максимальную твердость в закаленной стали. Наиболее эффективное охлаждение обеспечивает вода, но её недостаток – слишком быстрое охлаждение в интервале мартенситного превращения. В результате возникают большие внутренние напряжения. Минеральное масло наоборот дает малую скорость охлаждения в области мартенситного превращения, но не достаточно быструю в области перлитного превращения.

Способы закалки.

Для того, чтобы обеспечить закалку сталей на мартенсит необходимо быстро охлаждать её в области перлитного превращения. Но если с такой же скоростью охлаждать её и дальше в области мартенситного превращения, то в детали возникают резкие закалочные напряжения. Поэтому желательно проводить охлаждение в области мартенситного превращения по возможности медленнее, но среды с переменной скоростью охлаждения не существует и поэтому для разных деталей применяют различные способы охлаждения, чтобы получить закаленное состояние с минимум уровнем внутренних напряжений.

1. Охлаждение в одном охладителе (воде, масле). Недостаток - очень резкие внутренние напряжения. Чтобы их уменьшить применяют второй способ закалки.

2. Закалка в двух средах (из воды в масло). По этому способу в начале деталь охлаждают в воде, до температуры ниже перлитного превращения, а затем перебрасывают до окончательного охлаждения в масло. Этот способ сложен и требует высокой квалификации рабочих, от которых требуется выдерживать деталь определенное количество времени в воде. Если выдержка будет мала, то при дальнейшем охлаждении попадаем в перлитное превращение, и закалки не будет, а если выдержка слишком большая, то в деталях возникают большие внутренние напряжения.

3. Ступенчатая закалка. При ступенчатой закалке нагретую деталь охлаждают быстро до заданной температуре в специально горячей среде, в качестве которой используются расплавы металлов или солей. Время выдержки в горячей среде определяются маркой стали и может быть четко определено по секундомеру, после этого идет окончание охлаждение в воде или масле. Выдержка в горячей среде позволяет выровнять температуру по всему сечению деталей, поэтому при окончательном охлаждении в воде, или масле превращение аустенита в мартенсит идет одновременно по всему объему детали, что позволяет резко снизить уровень внутренних напряжений. Такой способ закалки применяют для крупногабаритных деталей сложной формы, чтобы до минимума снизить искажение формы.

4. Изотермическая закалка. Этот способ применяется для крупногабаритных деталей, которые нельзя охлаждать очень быстро, из-за опасности разрушения. При изотермической закалке нагретые детали помещают в горячую среду, нагретую до заданной температурой 350-400 градусов, в которой выдерживают до полного прохождения превращения аустенита в троостит или бейнит. После полного превращения деталь обычно охлаждается на воздухе. Дополнительного отпуска после такой закалке не требуется. Температура окружающей среды выбирается термообработкой, чтобы получить в детали структуру, обеспечивающую заданную твердость.

5. Закалка с обработкой холодом. При закалке высокоуглеродистых сталей, содержащих никель, молибден, вольфрам даже после полного охлаждения до нормальной температуры превращение аустенита в мартенсит проходит не полностью. Остаточный аустенит имеет невысокую твердость и поэтому твердость детали после закалки будет недостаточной. Для устранения остаточного аустенита закаленные детали дополнительно охлаждают в области отрицательных температур 70-80 градусов, парами углекислоты или жидкого азота. Дополнительное охлаждение вызывает переход остаточного аустенита в мартенсит и твердость закаленной стали повышается.

6. Закалка с самоотпуском. Этот способ закалки применятся для деталей, которые должны иметь различную твердость в различных местах. Чтобы получить переменную твердость, нагретую деталь помещают в охлажденную среду только рабочей поверхностью, оставляя хвостовик над поверхностью охлаждающей среды. После полного охлаждения поверхности деталь извлекают из охлаждающей среды и за счет тепла, сохранившегося в хвостовой части, происходит разогрев рабочей поверхности и ее отпуск. Температуру разогрева поверхности контролируют по цветам побежалости.

Поверхностная закалка.

Этот способ применяется для изделий, у которых должна быть поверхность и вязкая сердцевина (шестерни, валы). При поверхностной закалке нагрев проводится не всей детали, а только её поверхности. После нагрева сразу проводится охлаждение. Поэтому структурные измерения затрагивают только поверхность. В зависимости от способов нагрева различают несколько видов поверхностей закалки:

1. Закалка погружением – разогрев поверхности ведется за счет кратковременного погружения детали в горячую среду. После нагрева детали охлаждают в воде или масле. Толщина закаленного слоя определяются временем выдержки в горячей среде. Недостаток – невозможность получения тонкого закаленного слоя.

2. Газопламенная закалка. Разогрев поверхности детали проводится за счет нагрева пламенем газовой горелки. Достоинство способа в его универсальности, недостаток – высокая температура пламени вызывает перегрев поверхности и как следствие - крупное зерно, выгорание углерода, легирующих элементов, резкий температурой градиент, возможно отслаивание закаленного слоя.

3. Закалка ТВЧ – токами высокой частоты (индукционная закалка). Разогрев детали производится за счет наведения в ней токов высокой частоты. Деталь помещается внутрь индуктора, подключенного к истокам токов высокой частоты. Достоинство способа – высокая производительность недостаток – потребность в сложном оборудовании, для каждой детали необходим свой индуктор, наличие вредных электромагнитных полей.

4. Закалка с нагревом поверхности лазером. При этом способе закалки разогрев поверхности осуществляется за счет воздействия на неё высокоэнергетического пучка излучения. Интенсивность энергии настолько велика, что поверхность в течении нескольких долей секунд может быть нагрета до расплавления. Охлаждение поверхности после нагрева происходит за счет теплоотвода вглубь детали. Дополнительное охлаждение водой не требуется. Перемещая луч лазера по поверхности можно закаливать как отдельные участки детали, так и всю её поверхность. Этим способом можно закаливать внутренние поверхности детали, не закаливая её наружную поверхность. Глубина закаленного слоя регулируется временем, освещая её лазером. При таком способе закалки она может меняться от нескольких микрон до десятков и сотен микрон


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.011 сек.)