|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Квантовая оптика(1.) Тепловым излучением называют электромагнитные волны, испускаемые атомами, которые возбуждаются за счет энергии их теплового движения. Если излучение находится в равновесии с веществом, его называют равновесным тепловым излучением. Все тела при температуре Т 0 К испускают электромагнитные волны. Разреженные одноатомные газы дают линейчатые спектры излучения, многоатомные газы и жидкости - полосатые спектры, т.е.области с практически непрерымным набором длин волн. Твердые тела излучают сплошные спектры, состоящие из всевозможных длин волн. Человеческий глаз видит излучение в ограниченном диапазоне длин волн примерно от 400 до 700 нм. Чтобы человек смог увидеть излучение тела, температура тела должна быть не ниже 700 оС. Тепловое излучение характеризуют следующими величинами:
W - энергия излучения (в Дж);
(Дж/с = Вт) - световой поток или мощность излучения - это энергия, излучаемая (или поглощаемая) за единицу времени;
(Дж/(с.м2) - энергетическая светимость (S - площадь излучающей поверхности). Энергетическая светимость R - по смыслу - это энергия, излучаемая единичной площадью за единицу времени по всем длинам волн от 0 до.
Кроме этих характеристик, называемых интегральными, используют также спектральные характеристики, которые учитывают количество излучаемой энергии, приходящейся на единичный интервал длин волн или единичный интервал частот:
(Дж/(с.м3) излучательная способность - по смыслу -это энергия, излучаемая единичной площадью в единицу времени в единичном интервале: 1) длин волн или (Дж/ м2) 2) частот.
поглощательная способность (коэффициент поглощения) - это отношение поглощенного светового потока к падающему потоку, взятых в малом интервале длин волн вблизи данной длины волны.
В качестве научной абстракции при изучении теплового излучения используют понятие - абсолютно черное тело (АЧТ) - это тело, которое поглощает все падающие на него лучи. Для АЧТ коэффициент поглощения а = 1. Реальной модельюАЧТ может служить замкнутая полость с небольшим отверстием (см.рис.1). Тело, у которого коэффициент поглощения электро- магнитного излучения меньше единицы и не зависит от длины волны, называют серым телом.
Зависимость излучательной способности АЧТ r от длины волны показана на рис.2. Эти кривые математически описываются формулой, которая называется формулой Планка:
Здесь - длина волны излучения, с - скорость света в вакууме, к - постоянная Больцмана, Т - абсолютная температура, h - постоянная Планка.
Из формулы Планка можно вывести законы излучения АЧТ, которые ранее были получены экспериментально: (2) Закон Кирхгофа Для формулировки законов Кирхгофа, в электрической цепи выделяются узлы - точки соединения трёх и более проводников и контуры - замкнутые пути из проводников. При этом каждый проводник может входить в несколько контуров. В этом случае законы формулируются следующим образом. Первый закон Первый закон Кирхгофа (Закон токов Кирхгофа, ЗТК) гласит, что алгебраическая сумма токов в любом узле любой цепи равна нулю (значения вытекающих токов берутся с обратным знаком):
Иными словами, сколько тока втекает в узел, столько из него и вытекает. Данный закон следует из закона сохранения заряда. Если цепь содержит узлов, то она описывается уравнениями токов. Этот закон может применяться и для других физических явлений (к примеру, водяные трубы), где есть закон сохранения величины и поток этой величины. Второй закон Второй закон Кирхгофа (Закон напряжений Кирхгофа, ЗНК) гласит, что алгебраическая сумма падений напряжений по любому замкнутому контуру цепи равна алгебраической сумме ЭДС, действующих вдоль этого же контура. Если в контуре нет ЭДС, то суммарное падение напряжений равно нулю: для постоянных напряжений для переменных напряжений Иными словами, при обходе цепи по контуру, потенциал, изменяясь, возвращается к исходному значению. Если цепь содержит ветвей, из которых содержат источники тока ветви в количестве, то она описывается уравнениями напряжений. Частным случаем второго правила для цепи, состоящей из одного контура, является закон Ома для этой цепи. Законы Кирхгофа справедливы для линейных и нелинейных цепей при любом характере изменения во времени токов и напряжений.
закон Стефана - Больцмана:
который формулируется так: энергетическая светимость АЧТ прямо пропорциональна четвертой степени абсолютной температуры.
2).закон смещения Вина:
который формулируется так: длина волны, на которую приходится максимум излучения обратно пропорциональна абсолютной температуре. Здесь: = 5,67.10 8 Вт/(м2.К4) - постоянная Стефана - Больцмана. в = 2,9.10 3 м.К - постоянная Вина. Для серого тела закон Стефана-Больцмана можно записать как: R = · Т4, где = const и называется коэффициентом черноты или коэффициентом серости. (3)Закон Рэлея-Джинса
Закон Рэлея-Джинса - закон излучения Рэлея-Джинса для равновесной плотности излучения абсолютно чёрного тела и для испускательной способности абсолютно чёрного тела Формула Рэлея - Джинса для спектральной плотности энергетической светимости черного тела имеет вид Формула Планка - выражение для спектральной плотности мощности излучения абсолютно чёрного тела, которое было получено Максом Планком. Для плотности энергии излучения: Коэффициент пропорциональности впоследствии назвали постоянной Планка, = 1.054 · 10?27 эрг·с. (4) Оптическая пирометрия Методы измерения высоких температур, использующие зависимость спектральной плотности энергетической светимости или интегральной энергетической светимости тел от температуры, называются оптической пирометрией. Приборы для измерения температуры нагретых тел по интенсивности их теплового излучения в оптическом диапазоне спектра называются пирометрами. В зависимости от того, какой закон теплового излучения используется при измерении температуры тел, различаютрадиационную, цветовую и яркостную температуры. (5)Фотоэффект. Законы внешнего фотоэффекта Фотоэффе?кт - это испускание электронов веществом под действием света (и, вообще говоря, любого электромагнитного излучения). В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект. Законы фотоэффекта: Формулировка 1-го закона фотоэффекта: количество электронов, вырываемых светом с поверхности металла за единицу времени на данной частоте, прямо пропорционально световому потоку, освещающему металл. Согласно 2-му закону фотоэффекта, максимальная кинетическая энергия вырываемых светом электронов линейно возрастает с частотой света и не зависит от его интенсивности. 3-ий закон фотоэффекта: для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света (или максимальная длина волны?0), при которой ещё возможен фотоэффект, и если, то фотоэффект уже не происходит. Теоретическое объяснение этих законов было дано в 1905 году Эйнштейном. Согласно ему, электромагнитное излучение представляет собой поток отдельных квантов (фотонов) с энергией h? каждый, где h - постоянная Планка. При фотоэффекте часть падающего электромагнитного излучения от поверхности металла отражается, а часть проникает внутрь поверхностного слоя металла и там поглощается. Поглотив фотон, электрон получает от него энергию и, совершая работу выхода, покидает металл:, где - максимальная кинетическая энергия, которую может иметь электрон при вылете из металла. (6)Уравнение Эйнштейна для внешнего фотоэффекта. Экспериментальное подтверждение квантовых свойств света А. Эйнштейн в 1905 г. показал, что явление фотоэффекта и его закономерности могут быть объяснены на основе предложенной им квантовой теории фотоэффекта. Согласно Эйнштейну, свет частотой не только испускается, как это предполагал Планк (см. § 200), но и распространяется в пространстве и поглощается веществом отдельными порциями (квантами), энергия которых 0=h. Таким образом, распространение света нужно рассматривать не как непрерывный волновой процесс, а как поток локализованных в пространстве дискретных световых квантов, движущихся со скоростью с распространения света в вакууме. Кванты электромагнитного излучения получили название фотонов. По Эйнштейну, каждый квант поглощается только одним электроном. Поэтому число вырванных фотоэлектронов должно быть пропорционально интенсивности света (I закон фотоэффекта). Безынерционность фотоэффекта объясняется тем, что передача энергии при столкновении фотона с электроном происходит почти мгновенно. Энергия падающего фотона расходуется на совершение электроном работы выхода А из металла и на сообщение вылетевшему фотоэлектрону кинетической энергии mv2max/2. По закону сохранения энергии,
(7)Фотоны Согласно гипотезе световых квантов Эйнштейна, свет испускается, поглощается и распространяется дискретными порциями (квантами), названными фотонами. Энергия фотона?0 = hv. Его масса находится из закона взаимосвязи массы и энергии: m = hv/c2 Фотон - элементарная частица, которая всегда (в любой среде!) движется со скоростью света с и имеет массу покоя, равную нулю. Следовательно, масса фотона отличается от массы таких элементарных частиц, как электрон, протон и нейтрон, которые обладают отличной от нуля массой покоя и могут находиться в состоянии покоя. Импульс фотона р получим, если в общей формуле теории относительности положим массу покоя фотона т0? = 0: p = 0/c = hv/c Из приведенных рассуждений следует, что фотон, как и любая другая частица, характеризуется энергией, массой и импульсом. Выражения (19.5.1), (19.5.2) и 0 = h связывают корпускулярные характеристики фотона - массу, импульс и энергию - с волновой характеристикой света - его частотой v. Корпускуля?рно-волново?й дуали?зм света - свет обладает двойственной природой, получившей название корпускулярно-волнового дуализма света. С некоторыми объектами свет взаимодействует как волна, с другими - подобно потоку частиц. (8) Давление света Давление света - это давление, которое производят электромагнитные световые волны, падающие на поверхность какого-либо тела. Давление р, оказываемое волной на поверхность металла можно было рассчитать, как отношение равнодействующей сил Лоренца, действующих на свободные электроны в поверхностном слое металла, к площади поверхности металла:
Квантовая теория света объясняет давление света как результат передачи фотонами своего импульса атомам или молекулам вещества. (9) Эффект Комптона. Эффект Комптона (Комптон-эффект) - явление изменения длины волныэлектромагнитного излучения вследствие упругого рассеивания его электронами. - Объяснить эффект Комптона в рамках классической электродинамики невозможно. С точки зрения классической физикиэлектромагнитная волна является непрерывным объектом и в результате рассеяния на свободных электронах изменять свою длину волны не должна. Эффект Комптона является прямым доказательством квантования электромагнитной волны, другими словами подтверждает существование фотонов. Эффект Комптона является ещё одним доказательством справедливостикорпускулярно-волнового дуализма микрочастиц. (10) Корпускулярно-волновой дуализм Корпускуля?рно-волново?й дуали?зм - принцип, согласно которому любой объект может проявлять как волновые, так и корпускулярные свойства. Был введён при разработке квантовой механики для интерпретации явлений, наблюдаемых в микромире, с точки зрения классических концепций. Дальнейшим развитием принципа корпускулярно-волнового дуализма стала концепция квантованных полей в квантовой теории поля. Как классический пример, свет можно трактовать как поток корпускул (фотонов), которые во многих физических эффектах проявляют свойства электромагнитных волн. Свет демонстрирует свойства волны в явлениях дифракции и интерференции при масштабах, сравнимых с длиной световой волны. Например, даже одиночные фотоны, проходящие через двойную щель, создают на экране интерференционную картину, определяемую уравнениями Максвелла (11) Постулаты Бора Постулаты Бора - основные допущения, сформулированные Нильсом Бором в 1913 году для объяснения закономерностилинейчатого спектра атома водорода и водородоподобных ионов (формула Бальмера-Ридберга) и квантового характера испускания и поглощения света. Бор исходил из планетарной модели атома Резерфорда Постулаты Модель атома Бора " Атом может находиться только в особенных стационарных, или квантовых, состояниях, каждому из которых отвечает определенная энергия. В стационарном состоянии атом не излучает электромагнитных волн. " Электрон в атоме, не теряя энергии, двигается по определённым дискретным круговым орбитам, для которых момент импульса квантуется:, где -натуральные числа, а - постоянная Планка. Пребывание электрона на орбите определяет энергию этих стационарных состояний. " При переходе электрона с орбиты (энергетический уровень) на орбиту излучается или поглощается квант энергии, где - энергетические уровни, между которыми осуществляется переход. При переходе с верхнего уровня на нижний энергия излучается, при переходе с нижнего на верхний - поглощается. Используя данные постулаты и законы классической механики, Бор предложил модель атома, ныне именуемую Боровской моделью атома[1]. В дальнейшем Зоммерфельд расширил теорию Бора на случай эллиптических орбит. Её называют моделью Бора-Зоммерфельда. (12) Опыт Франка-Герца Опыт Франка - Герца - опыт, явившийся экспериментальным доказательствомдискретности внутренней энергии атома. Поставлен в 1913 Дж. Франком и Г. Герцем. На рисунке приведена схема опыта. К катоду К и сетке C1 электровакуумной трубки, наполненной парами Hg (ртути), прикладывается разность потенциалов V, ускоряющаяэлектроны, и снимается зависимость силы тока I от V. К сетке C2 и аноду Априкладывается замедляющая разность потенциалов. Ускоренные в области I электроны испытывают соударения с атомами Hg в области II. Если энергия электронов после соударения достаточна для преодоления замедляющего потенциала в области III, то они попадут на анод. Следовательно, показания гальванометра Г зависят от потери электронами энергии при ударе. В опыте наблюдался монотонный рост I при увеличении ускоряющего потенциала вплоть до 4,9 В, то есть электроны с энергией Е < 4,9 эВ испытывали упругие соударения с атомами Hg и внутренняя энергия атомов не менялась. При значении V = 4,9 В (и кратных ему значениях 9,8 В, 14,7 В) появлялись резкие спады тока. Это определённым образом указывало на то, что при этих значениях V соударения электронов с атомами носят неупругий характер, то есть энергия электронов достаточна для возбуждения атомов Hg. При кратных 4,9 эв значениях энергии электроны могут испытывать неупругие столкновения несколько раз. Таким образом, опыт Франка - Герца показал, что спектр поглощаемой атомом энергии не непрерывен, а дискретен, минимальная порция (квант электро-магнитного поля), которую может поглотить атом Hg, равна 4,9 эВ. Значение длины волны? = 253,7 нм свечения паров Hg, возникавшее при V > 4,9 В, оказалось в соответствии со вторым постулатом Бора , где E0 и E1 - энергии основного и возбужденного уровней энергии. В опыте Франка - Герца, E0 - E1 = 4,9 эв. Артур Комптон, повторив (1922-1923) опыт Франка - Герца, обнаружил, что при V > 4,9 В пары Hg начинают испускать свет с частотой ? =?E/h, где?E = 4,9 эВ (h - постоянная Планка). Таким образом, возбуждённые электронным ударом атомы Hg испускают фотон с энергией 4,9 эВ и возвращаются в основное состояние. В 1925 г. Густав Герц и Джеймс Франк были награждены Нобелевской премией за открытие законов соударения электрона с атомом.
Схема электровакуумной трубки, использованной в эксперименте
Зависимость тока от напряжения. Видны острые периодические пики, соответствующие ионизации атомов.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.01 сек.) |