|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Волновая оптика
Волновая оптика Цуг волн — это ряд возмущений с перерывами между ними. Излучение отдельного атома не может быть монохроматическим, потому что излучение длится конечный промежуток времени,имея периоды нарастания, установления и процесс угасания. Его [цуг] можно представить суперпозицией гармонических волн частотного диапазона (ω±Δω/2). Цуг волн может принимать участие в создании картины интерференции при условии, что сдвиг фаз между центрами частотного диапазона и его пределом не превышает, то есть, чтобы колебания от центра не уничтожались колебаниями от других составляющих цуга:
следовательно:
Уравнение волны: Базовым представителем волн являются линейные распространяющиеся волны, возникающие в системах, динамика которых может быть описана линейными гиперболическими уравнениями второго порядка (волновыми уравнениями) относительно характеристик системы
где матрицы Длина волны: Длина́ волны́ — расстояние между двумя ближайшими друг к другу точками, колеблющимися в одинаковых фазах, обычно длина волны обозначается греческой буквой
Получить соотношение, связывающее длину волны с фазовой скоростью (
Волнам де Бройля также соответствует определенная длина волны. Частице с энергией Е и импульсом p, соответствуют: частота: длина волны: Оптическая разность хода:
Разность |r1 - r2| называют геометрической разностью хода.
Интенсивность света: Любой источник света характеризуется своей интенсивностью — средним по времени значением величины вектора Пойнтинга:
Таким образом, интенсивность пропорциональна квадрату амплитуды колебаний электромагнитного поля:
Через значение напряжённости электрического поля её можно выразить следующим образом:
2. Интерференция монохроматического света — перераспределение интенсивности света в результате наложения(суперпозиции) нескольких световых волн. Это явление сопровождается чередующимися в пространстве максимумами и минимумами интенсивности. Её распределение называется интерференционной картиной.Световые колебания в некоторой точке, через которую проходит строго монохроматическая волна, должны продолжаться бесконечно долго и иметь неизменную частоту и амплитуду. Свет, излучаемый любым реальным источником,этим свойством не обладает. Тем не менее монохроматическая идеализация оказывается достаточной для решения многих задач. В частности, при изучении явлениий интерференции она пригодна для определения положения максимумов и минимумов интерференционной картины. Пусть в некоторую точку приходят волны, напряженности электрического поля которых равны Е1 и Е2. Попринципу суперпозиции, напряженность результирующего поля равна их векторной сумме: Е = Е1 + Е2. В результате сложения двух гармонических колебаний одинаковой частоты получается колебание той же частоты, неизменная во времени амплитуда которого зависит от соотношения фаз складываемых колебаний и поэтому в разных точках наблюдения имеет, вообще говоря, разные значения. Из-за очень большой частоты оптических колебаний напряженность Е невозможно измерить непосредственно. Все приемники излучения измеряют энергетические величины (интенсивность света или освещенность поверхности), усредненные за промежуток времени, очень большой по сравнению с периодом оптических колебаний. Поэтому экспериментально наблюдаемые величины пропорциональны среднему значению квадрата напряженности электрического поля <E2> за время, определяемое инерционностью приемника излучения:
Выражение для результирующей интенсивности помимо суммы интенсивностей каждой из волн содержит еще одно слагаемое, пропорциональное 2<Е1Е2>, называемое интерференционным членом. В тех случаях, когда интерференционный член обращается в нуль, результирующая интенсивность равна сумме интенсивностей и интеференция отсутствует. Скалярное произведение Е1Е2 равно нулю, если складываемые волны линейно поляризованы в ортогональных направлениях. Отсутствие интерференции лучей, поляризованных во взаимно перпендикулярных направлениях, было обнаружено Френелем и Араго в 1816 г. и интерпретировано в 1817 г. Юнгом как доказательство поперечности световых волн. Электромагнитная теория света полностью подтвердила это заключение. В дальнейшем будем считать, что оба вектора Е1 и Е2 в точке наблюдения совершают колебания вдоль одной прямой. Тогда можно отвлечься от векторного характера этих величин и записать интерференционный член в виде 2<Е1Е2>. Рассмотрим два случая. Во-первых - случай, когда в точке наблюдения налагаются две плоские монохроматические волны. Второй - случай интерференции волн от двух точечных источников. 3. Методы получения когерентных волн: Для получения когерентных световых волн с помощью обычных (нелазерных) источников применяют метод разделения света от одного источника на две или нескольких систем волн (световых пучков). В каждой из них представлено излучение одних и тех же атомов источника, так что эти волны когерентны между собой и интерферируют при наложении. Разделение света на когерентные пучки можно осуществить с помощью экранов и щелей, зеркал и преломляющих тел. Рассмотрим некоторые из этих методов. 3.1Метод Юнга Источником света служит ярко освещенная щель S, от которой световая волна падает на две узкие щели S1 и S2, параллельные щели S. Таким образом, щели S1 и S2 играют роль когерентных источников. На экране Э (область ВС) наблюдается интерференционная картина в виде чередующихся светлых и темных полос. 3.2.Бипризма Френеля.
Она состоит из двух одинаковых сложенных основаниями призм. Свет от источника S преломляется в обеих призмах, в результате чего за призмой распространяются лучи, как бы исходящие от мнимых источников S1 и S2, являющихся когерентными. Таким образом, на экране Э (область ВС) наблюдается интерференционная картина. 3.3 Оптическая длина пути и разность хода
Пусть две когерентные волны (см. 3.1) создаются одним источником S, но до экрана проходят разные геометрические длины путей l1 и l2 в средах с абсолютными показателями преломления n1 и n2 соответственно (рис.4). Тогда фазы этих волн [см. (1) и (2.9)] wt - j1= wt - k1l1 + j0, wt - j2= wt - k2l1 + j0,а разность фаз j2 -j1 = k2l2 - k1l1 = Произведение геометрической длины пути l световой волны на абсолютный показатель преломления n называется оптической длиной пути волны. Величину
4. Расчет интерференционной картины от двух когерентных источников: Расчет интерференционной картины можно провести, используя две узкие параллельные щели Значит Подставляя полученное значение Опыт Юнга — эксперимент, проведённый Томасом Юнгом и ставший экспериментальным доказательством волновой теории света. Результаты эксперимента были опубликованы в 1803 году.В опыте пучок света направляется на непрозрачный экран-ширму с двумя параллельными прорезями, позади которого устанавливается проекционный экран. Этот опыт демонстрирует интерференцию света, что является доказательством волновой теории. Особенность прорезей в том, что их ширина приблизительно равна длине волны излучаемого света. Ниже рассматривается влияние ширины прорезей на интерференцию. Если исходить из того, что свет состоит из частиц (корпускулярная теория света), то на проекционном экране можно было бы увидеть только две параллельных полосы света, прошедших через прорези ширмы. Между ними проекционный экран оставался бы практически неосвещенным. С другой стороны, если предположить, что свет представляет собой распространяющиеся волны (волновая теория света), то, согласно принципу Гюйгенса, каждая прорезь является источником вторичных волн. Если вторичные волны достигнут линии в середине проекционного экрана, находящейся на равном удалении от прорезей, синхронно и в одной фазе, то на серединной линии экрана их амплитуды прибавятся, что создаст максимум яркости. То есть, максимум яркости окажется там, где согласно корпускулярной теории, яркость должна быть практически нулевой. Корпускулярная теория света является неверной, когда прорези достаточно тонкие, создавая тем самым интерференцию. На определенном удалении от центральной линии, напротив, волны окажутся в противофазе — их амплитуды компенсируются, что создаст минимум яркости (темная полоса). По мере дальнейшего удаления от средней линии яркость периодически изменяется, возрастая до максимума и снова убывая. На проекционном экране получается целый ряд чередующихся интерференционных полос, что и было продемонстрировано Томасом Юнгом 5. Интенфиренция света в тонких пленках. Интерференция возникает при разделении первоначального луча света на два луча при его прохождении через тонкую плёнку, например плёнку, наносимую на поверхность линз у просветлённых объективов. Луч света, проходя через плёнку толщиной Лучи соседних участков спектра по обе стороны от нм интерферируют не полностью и только ослабляются, отчего плёнка приобретает окраску. В приближении геометрической оптики, когда есть смысл говорить об оптической разности хода лучей, для двух лучей
Просветле́ние о́птики — это Просветляющие плёнки уменьшают светорассеяние и отражение падающего света от поверхности оптического элемента, соответственно улучшая светопропускание системы и контраст оптического изображения. Просветлённый объектив требует бережного обращения, так как плёнки, нанесенные на поверхность линз, легко повредить. Кроме того, тончайшие пленки загрязнений (жир, масло) на поверхности просветляющего покрытия нарушают его работу и резко увеличивают нанесение на поверхность линз, граничащих с воздухом, тончайшей плёнки или нескольких плёнок одна поверх другой. Это необходимо для увеличения светопропускания оптической системы. Показатель преломления таких плёнок меньше показателя преломления стёкол линз. отражение света от загрязненной поверхности. Следует помнить, что следы пальцев со временем 6. Полосы равного наклона Особенно важен частный случай интерференции света, отраженного двумя поверхностями плоскопараллельной пластинки, когда точка наблюдения находится в бесконечности, т.е. наблюдение ведется либо глазом, аккомодированным на бесконечность, либо на экране, расположенном в фокальной плоскости собирающей линзы Полосы равного наклона можно получить не только в отраженном свете, но и в свете, прошедшем сквозь пластинку. В этом случае один из лучей проходит прямо, а другой – после двух отражений на внутренней стороне пластинки. Однако видимость полос при этом низкая. Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.353 сек.) |