АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА

Читайте также:
  1. B. группа: веществ с общими токсическими и физико-химическими свойствами.
  2. B. метода разделения смеси веществ, основанный на различных дистрибутивных свойствах различных веществ между двумя фазами — твердой и газовой
  3. I. ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА ВОДЫ И ВОДЯНОГО ПАРА
  4. Q.3. Магнитные свойства кристаллов.
  5. XI. ПРИСПОСОБЛЕНИЕ И ДРУГИЕ ЭЛЕМЕНТЫ, СВОЙСТВА. СПОСОБНОСТИ И ДАРОВАНИЯ АРТИСТА
  6. А. Общие химические свойства пиррола, фурана и тиофена
  7. А. ОСНОВНЫЕ СВОЙСТВА КОРРЕКЦИЙ
  8. Аминокислоты винограда и вина. Состав, свойства аминокислот.
  9. Анализ издержек начинается с построения их классификаций, которые помогут получить комплексное представление о свойствах и основных характеристиках.
  10. Арифметическая середина и ее свойства
  11. Б) не обладающие физическими свойствами, но приносящие постоянно или длительное время доход
  12. Б. Специфические химические свойства пиррола

8.1. Всякое вещество является магнетиком, т.е. способно
под действием магнитного поля приобретать магнитный момент
(намагничиваться). По величине и направлению этого момента, а
также по причинам, его породившим, все вещества делятся на
группы. Основные из них - диа и парамагнетики.

8.1.1. Молекулы д и а м а г н е т и к а собственного маг-
нитного момента не имеют. Он возникает у них только под дейс-
твием внешнего магнитного поля и направлен против него. Таким
образом результирующее магнитное поле в диамагнетике меньше,
чем внешнее поле, правда, на очень малую величину. Это приво-
дит к тому, что при перемещении диамагнетика в неоднороное
магнитное поле он стремится сместиться в ту область, где нап-
ряжение магнитного поля меньше.

Патент США 3 611 815: Гироскопическая система, практичес-
ки свободная от трения, содержит цилиндрический ротор, концы
которого окружены парой кольцевых постоянных магнитов. На каж-
дом конце ротора установлена вставка из диамагнитного материа-
ла, взаимодействующая с соответствующим постоянным магнитом
так, что создаются отталкивающие магнитные силы, которые удер-
живают ротор в состоянии, характеризующимся отсутствием физи-
ческого контакта ротора с магнитом: ротор "всплывает" в маг-
нитном поле практически без трения.

8.1.2. Молекулы (или атомы) парамагнетика имеют
собственные магнитные моменты, которые под действием внешних
полей ориентируются по полю и тем самым создают результирующее
поле, превышающе внешнее. Парамагнетики втягиваются в магнит-
ное поле.
Так, например, жидкий кислород - парамагнетик, он притя-
гивается к магниту.

Магнитная проницаемость конкретного вещества зависит от
многих факторов: напряженности магнитного поля, формы рассмат-
риваемого поля (так как конечные размеры любого магнетика при-
водят к появлению встречного поля, уменьшающего первоначаль-
ное), температуры, частоты изменения магнитного поля, наличия
дефектов структуры и т.д.

Патент Великобритании 1 343 270: Способ измерения темпе-
ратуры, например, стальных пластин, окрашенных виниловыми кра-
сителями. Температура пластин определяется по изменениям их
магнитной проницаемости и проводимости, которые воспринимаются
индуктивным зондам, подключенным к генератору.

А.с. 550 572: Способ структуроскопии ферромагнитных изде-
лий, заключающийся в том, что контролируемое изделие подверга-
ют взаимодействию с электроиндуктивным преобразователем маг-
нитной проницаемости в электрические сигналы, по которым судят
о результатах контроля, отличающийся тем, что с целью повыше-
ния достоверности определения усталостных изменений в структу-
ре материала изделия, поверхность последнего сканируют преоб-
разователем по заданной функции относительно места
концентрации механических напряжений, регистрируют экстремумы
относительного значения магнитной проницаемости и по их расп-
ределению судят об усталостных изменениях в структуре материа-
ла.

А.с. 438 922: Способ неразрушающего контроля физико-хими-
ческих процессов в структурированных упруго-вязкопластичных
системах, основанный на изменении магнитной воспримчивости,
отличающийся тем, что с целью повышения точности определения
нормальной густоты водных растворов вяжущих веществ, изменяют
во времени изменения удельной магнитной воспримчивости и по
максимальному значению ее судят о готовности продукта.

Существует ряд веществ, в которых квантовые эффекты межа-
томных взаимодействий приводят к появлению специфических маг-
нитных свойств.

8.1.3. Наиболее интересное свойство - ферромагнетизм. Оно
характерно для группы веществ в твердом кристаллическом состо-
янии (ферромагнетиков), характеризующихся параллельной ориен-
тацией магнитных моментов атомных носителей магнетизма.

Параллельная ориентация магнитных моментов существует в
довольно больших участках вещества - доменах. Суммарные маг-
нитные моменты отдельных доменов имеют очень большую величину,
однако сами доменты обычно ориентированы в веществе хаотично.
При наложении магнитного поля происходит ориентация доменов,
что приводит к возникновению суммарного магнитного момента у
всего обьема ферромагнетика, и, как следствие, к его наманичи-
ванию.

А.с. 540 299: Постоянный магнит, содержащий одноименные
частицы, отличающийся тем, что с целью повышения коэрицитивной
силы, в качестве доменов использованы отрезки литого микропро-
вода в стеклянной изоляции, каждый из которых содержит один
микрокристал.

Естественно, что ферромагнетики, как и парамагнетики, пе-
ремещаются в ту точку поля, где напряженность максимальная
(втягиваются в магнитное поле). Из-за большой величины магнит-
ной проницаемости сила, действующая на них, гораздо больше.

А.с. 512 224: 1- Способ склеивания ферромагнитных матери-
алов, включающий операцию нанесения клея на склеиваемые по-
верхности, соединение поверхностей, полного отвердения клея,
отличающийся тем, что с целью уничтожения прочности склеива-
ния, в период открытой выдержки раздельно проводят обработку
каждой из двух склеиваемых поверхностей с нанесенным на них
слоя клея постоянными магнитными полями противоположной поляр-
ности с напряженностью от 500 до 700 эротед.

2- Способ по п.1, отличающийся тем, что в период отверж-
дения на клеевой шов воздействуют магнитным полем, совпадающим
по направлению с полем остаточного магнетизма.

А.с. 185 003: Способ обработки внутренних поверхностей
труб, включающий операции по введению внутрь трубы абразива
ввиде мелкозернистого или порошкобразного вещества высокой
твердости, перемещения этого абразива относительно внутренней
поверхности трубы при их взаимном контакте и последующего изв-
лечения из трубы полученного порошкообразного продукта, отли-
чающийся тем, что с целью улучшения качества обработки трубы и
для ее нагрева, феромагнитный абразив после его введения
внутрь трубы подвергается воздействию вращающегося электромаг-
нитного поля, созданного вокруг трубы.

Здесь используется эффект втягивания ферромагнетика в то
место поля, где магнитные силовые линии "гуще"; так как поле
вращается, то вращаются и частицы.

8.1.3.1. Существование доменов в ферромагнетиках возможны
только ниже определенной температуры (ТОЧКА КЮРИ). Выше точки
Кюри тепловое движение нарушает упорядоченную структуру доме-
нов и ферромагнетик становится обычным парамагнетиком.

Патент ФРГ 1 243 791: Термолюминисцентный дозиметр, со-
держащий дозиметрический элемент, заключенный в герметизиро-
ванную прозрачную камеру и снабженный носителем
люминисцентного материала, нагреваемый индукционным путем, от-
личающийся тем, что носитель содержит ферромагнитный материал,
точка Кюри которого, характеризующие фазовый переход второго
рода, соответствуют определенной максимальной температуре.

Диапазон температур Кюри для ферромагнетиков очень широк:
у радолиния температура Кюри 20 C, для читого железа - 1043 К.
Практически всегда можно подобрать вещество с нужной темпера-
турой Кюри.

А.с. 266 029: Магнитная муфта скольжения, содержащая кор-
пус и многополюсный ротор с постоянными магнитами,
отличающаяся тем, что с целью автоматического включения муфты
при заданной температуре, она снабжена шунтами, установленными
между полюсами ротора и выполненного из термореактивного мате-
риала, имеющего характеристику магнитной проницаемости с точ-
кой Кюри, соответствующей заданной температуре, а корпус и ро-
тор изготовлены из материала сточкой Кюри, соответствующей
температуре выше заданной.

При понижении температуры все парамагнетики, кроме тех у
которых парамагнетизм обусловлен электронами проводимости, пе-
реходят либо в ферромагнитное, либо в антиферромагнитное сос-
тояние.

8.1.4. У некоторых веществ (хром, марганец) собственные
магнитные моменты электронов ориентированы антипараллельно
(навстречу) друг другу. Такая ориентация охватывает соседние
атомы и их магнитные моменты компенсируют друг друга. В ре-
зультате антиферромагнетики обладают крайне малой магнитной
воспримчивостью и ведут себя как очень слабые парамагнетики.

8.1.4.1. Для антиферромагнетиков также существует темпе-
ратура, при которой антипараллельная ориентация спинов исчеза-
ет. Эта температура называется антиферромагнитной точкой Кюри
или точкой Нееля.

У некоторых ферромагнетиков (эрбин, диоброзин, сплавов
марганца и меди) таких температур две (верхняя и нижняя точка
Нееля), причем антиферромагнитные свойства наблюдаются только
при промежуточных температурах. Выше верхней точки вещество
ведет себя как парамагнетик, а при температурах меньших нижней
точки Нееля, становится ферромагнетиком.

8.1.5. Необратимое изменение намагниченности ферромагнит-
ного образца, находящегося в слабом постоянном магнитном поле,
при циклическом изменении температуры называется температурным
магнитным гистерезисом. Наблюдается два вида гистерезиса, выз-
ванных изменением доменой и кристаллической структуры. Во вто-
ром случае точка Кюри при нагреве лежит выше, чем при охлажде-
нии.

А.с. 467 314: Способ записи оптических изображений на
ферромагнитную пленку, заключающийся в ее экспонировании, от-
личающийся тем, что с целью упрощения процесса записи путем
исключения операции по намагничиванию пленки, экспонирование
пленки осуществляют в интервале от температуры Кюри при нагре-
ве до температуры Кюри при охлаждении.

А.с. 515 169: Способ сборки ферритовых постоянных магни-
тов в систему с предварительным намагничиванием каждого магни-
та, отличающийся тем, что с целью исключения потери
намагниченности при сборке, перед операцией намагничивания
каждый постоянный магнит нагревают до температуры, при которой
кривые возврата совпадают с кривой размагничивания.

8.1.6. Ферримагнетизм - (или антиферромагнетизм неском-
пенсированный) совокупность магнитных свойств веществ (ферро-
магнетиков) в твердом состоянии, обусловленных наличием внутри
тела межэлектронного обменного взаимодействия, стремящегося
создать антипараллельную ориентацию соседних атомных магнитных
моментов. В отличии от антиферромагнетиков, соседние противо-
положно направленные магнитные моменты в силу каких-либо при-
чин не полностью компенсируют друг друга. Поведение ферромаг-
нетика во внешнем поле во многом аналогично ферромагнетику, но
температурная зависимость свойств имеет иной вид: иногда су-
ществует точка компенсации суммарного магнитного момента при
температуре ниже точки Нееля. По электрическим свойствам фер-
ромагнетикид и э ле к т р и к и или полупроводники.

8.1.7. Суперпарамагнетизм - квазипарамагнитное поведение
систем состоящих совокупности экстремально малых ферро или фе-
римагнитных частиц. Частицы этих веществ при определенно малых
размерах переходят в однодоменное состояние с однородной са-
мопроизвольной намагниченностью по всему обьему частицы. Сово-
купность таких веществ ведет себя по отношению к воздействию
внешнего магнитного поля и температуры подобно парамагнитному
газу (сплавы меди с кобальтом, тонкие порошки никеля и т.д.)

Очень малые частицы антиферрмагнетиков также обладают
особыми свойствами, похожими на суперпарамагнетизм, посколько
в них происходит нарушение полной компенсации магнитных момен-
тов. Аналогичными свойствами обладают и тонкие ферромагнитные
пленки.

Супермагнетизм применяется в тонких структурных исследо-
ваниях, в методах неразрушающего определения размеров, форм,
количества и состава магнитной фазы и т.п.

8.1.8. Пьезомагнетики - вещества, у которых при наложении
упругих напряжений возникает спонтанный магнитный эффект, про-
порциональный первой степени величины напряжений. Этот эффект
весьма мал и легче всего его обнаружить в антиферромагнетиках.

8.1.9. Магнитоэлектрики - вещества, у которых при помеще-
нии их в электрическое поле возникает магнитный момент, про-
порциональный значению поля.

8.2. Магнитокалорический эффект - изменение температуры
магнетика при его намагничивании. Для парамагнетика увеличение
поля приводит к увеличению температуры. что используется для
получения сверхнизких температур методом адиабатического раз-
магничивания парамагнитных солей.

8.3. Изменение размеров тела, вызванное изменениями его
намагниченности, называют - магнитострикцией (обьемной или ли-
нейной).Величина эффекта для обьемной магнитострикции -3.10 в
минус пятой степени, а для линейной - 10 в минус четвертой
степени.

А.с. 517 927: Устройство для юстировки блока магнитных
головок, содержащее рычаг с закрепленными на его конце указан-
ными блоками и источник напряжения, под воздействием потенциа-
лов которого осуществляется перемещение рычага, отличающееся
тем, что с целью повышения точности юстировки в направлении,
перпендикулярном поверхности рабочего слоя магнитного носите-
ля, оно снабжено пружиной, скрепленной с другим концом рычага,
фиксирующем его положение зажимом, и соленоидом, при этом ры-
чаг выполнен в виде магнитострикционного стержня и помещен
своей средней частью в полости соленоида.

Этот эффект сильно зависит от соотношения в сплаве и от
температуры.

Необычное применение эффекта для нагрева:

А.с. 550 771: Установка для индукционного нагрева текучих
сред содержащая массивный сердечник с продольными каналами для
прохождения среды и обхватывающее его коаксиально установлен-
ныеизоляционную трубку и индуктор, подключенный к источнику
переменного тока, отличающаяся тем, что с целью интенсификации
нагрева путем информации кристаллической решетки материала
сердечника,а индуктор дополнительно подключен к источнику пос-
тоянного тока.

8.3.1. Т е р м о с т р и к ц и я - магнитострикционная
деформация ферро и антиферромагнитных тел при нагревании их в
отсутствии магнитного тела. Эта деформация сопутствует измене-
нию самопроизвольнойнамагниченности с нагревом. Она особенно
велика в близи точек Кюри и Нееля, т.к. здесь особенно сильно
изменяется намагниченность.

Наложение термострикции на обычное тепловое расширение
приводит к аномалии в ходе теплового расширения. В некоторых
феромагнитах и антиферромагнитах эти аномалии очень велики.


8.4. Магнитоэлектрический эффект - явление намагничивания
ряда веществ в антиферромагнитном состоянии электрическим по-
лем и их электрически поляризация магнитным полем. (Открытие
N'123). Этот эффект обусловлен специфическойсимметрией распо-
ложения магнитных моментов в кристаллической решетке вещества.

Этот эффект позволяет получать сведения о магнитной
структуре веществ без сложных нейтронографических последствий
и применяется в волноводных устройствах СВЧ.

8.5. В основе гиромагнитных или магнитомеханических явле-
ний лежит вращение электрона вокруг ядра. Суть этих явлений
заключается в том, что намагничение магнетика приводят к его
вращению (Эффект Энштейна и де Хаасе), и наоборот вращение
магнетика вызывает его намагничивание.

Патент США 3 322 364: Способ компенсации влияния гиромаг-
нитного эффекта при угловом перемещении магнитометров резуль-
тирующего поля, находящегося на самолете, и прибор для его
осуществления обеспечивает компенсацию влияния гиромагнитного
эффекта на магнитометр результирующего поля который имеет отс-
читывающую обмотку. Гиромагнитный эффект возникает в результа-
те углового перемещения относительно данного направления, со-
вершаемого самолетом, на котором находится магнитометр.
Вырабатывается электрический сигнал, величина котрого пропор-
циональна угловой скорости самолета относительно данного нап-
равления. В отсчеты магнитометра вводится пропорциональная
этому сигналу коррекция, которая учитывает также угол между
указанным выше направлением силовых линий измеряемого поля.

8.6. Магнитоэустические эфекты - (магнитоупругие взаимо-
действия) в феритах-гранатах возникают в результате взаимо-
действия между спинами магнитных ионов и упругими колебаниями
решетки, т.е. в результате тех же взаимодействий, что и магни-
тострикционные эффекты.

А.с. 528 497: Волоконный звукопровод, состоящий из воло-
кон звукопроводящего материала, собранных по концам в жгут,
отличающийся тем, что с целью увеличения стабильности эксплуа-
тационных характеристик волокна выполнены из ферромагнитного
материала и намагничены на требуемом участке звукопровода по
всему его сечению в одном направлении.

А.с. 482 634: Способ измерения частоты механических коле-
баний обьекта основанный на совпадении составляющей вибрации с
частотой собственных колебаний одного из несколько упругих
элементов, жестко связанный с обьектом, отличающийся тем, что
с целью повышения точности измерения, жесткость упругого эле-
мента изменяют магнитным полем с симметричной магнитодвижущей
силой напряженность которого изменяется пилообразным током, и
по величине тока в момент резонанса определяют частоту механи-
ческих колебаний обьекта.

8.7. Ферромагнитный резонанс - электронный магнитный ре-
зонанс в ферромагнетиках - совокупность явлений, связанных с
избирательным поглощением ферромагнитиками энергии электромаг-
нитного поля при частотах совпадающих с собственными частотами
процессии магнитных моментов электронной системы во внутреннем
эффективном магнитном поле. (Поглощение на несколько порядков
больше, чем в ВПР).

А.с. 284 161: Способ измерения многновенного значения то-
ка путем сравнивания с постоянным током, отличающийся тем, что
с целью увеличения быстродействия и точности измерения, ферри-
товый элемент выводят из режима ферромагнитного резонанса по-
мещая его в магнитное поле измеряемого постоянным током, возв-
ращают его в режим феррорезонанса, изменяя постоянный ток, и
по величине постоянного тока судят о мгновенном значении изме-
ряемого параметра.

8.8. Вблизи точек Кюри и Нееля у магнетиков наблюдается
сильные аномалии в изменении различных свойств при изменении
температуры. Для ферромагнитиков это - эффекты Гопкинса (воз-
растание магнитной восприимчивости вблизи точки Кюри и Баркга-
узена) ступенчатый ход кривой намагниченности образца вблизи
температуры Кюри при изменении температуры, упругих напряжений
или внешнего магнитного поля.

А.с. 425 142: Способ измерения максимальной дифференци-
альной магнитной проницаемости в ферромагнитных материалах,
основанный на подсчете числа скачков Баркгаузена на восходящей
ветви петли гистеризиса, отличающийся тем, что с целью повыше-
ния точности и упрощения процесса измерения, уменьшают напря-
женность магнитного поля до величины, при которой чило скачков
Баркгаузена на нисходящей ветви петли гистеризиса станет рав-
ным половине общего числа скачков, при этом значении уменьшают
напряженность магнитного поля на заданную величину и измеряют
приращение индукции, по величине которой определяют максималь-
ную дифференциальную магнитную проницаемость.

Кроме того, вблизи точки Кюри наблюдается ферромагнитная
аномалия теплоемкости. Это дает возможность определять темпе-
ратуру Кюри и отсутствии магнитного поля.

Близкие эффекты наблюдаются и в антиферомагнитиках.


Л И Т Е Р А Т У Р А


Г.С.Кринчик, Физика магнитных явлений. М., изд-во МГУ 1976.
К 8.1. "Наука и жизнь", N'4 стр.44
Физический энцеклопедический словарь, т.5, стр.83,
305-309.
А.с.515021, 239633, 449292, 426183, 504103,466574,
Патент США 3797224.
К 8.3. А.с.541530, 541561.

КОНТАКТНЫЕ ТЕРМОЭЛЕКТРИЧЕСКИЕ И ЭМИССИОННЫЕ ЯВЛЕНИЯ.

9.1.При контакте двух разных металлов один из них заряжа-
ется положительно, другой - отрицательно и между ними возника-
ет разность потенциалов, называемая к о н т а к т н о й. Она
не очень мала - от десятых долей вольта до нескольких вольт и
зависит только от химического состава и температуры контакти-
рующих тел "(Закон Вольта)"

А.С.N 508550: Способ контроля качества спекания агломера-
ционной шихты путем изменения электрических характеристик спе-
каемого материала,отличающийся тем,что с целью повышения
быстродействия непрерывности контроля качества,исключения
влияния влажности исходной шихты, измеряют абсолютное значение
электрического напряжения (ЭДС) между корпусом спекаемого аг-
регата и спеченным материалом и сравнивают эту величину с аб-
солютной величиной электрического напряжения (ЭДС),полученной
при спекании материала с эталонными характеристиками.

А.С.N 255620 Способ определения усталостной прочности ме-
талла заключающийся в том,что образец из иследуемого металла
нагружает его до разрушения и по числу циклов нагружения до
разрушения судят об усталостной прочности металла,отличающ с
целью определения накопления усталостных повреждений в металле
также в процессе его нагружения;измеряют величину работы вы-
хода электрона с его поверхности например, методом контактной
разности потенциалов, по которой судят о накоплении усталост-
ных повреждений в металле.

Контактная разность потенциалов возникает не только между
двумя металлами, но и между двумя полупроводниками полупровод-
ником и металлом,двумя диэлектриками и т.д., причем соприкаса-
ющие тела могут не только твердыми, но и жидкими.

9.1.1 В основе т р и б о э л е к т р и ч е с т в а
(электризации тел при трении) также лежат контактные яв-
ления.Причем знаки зарядов, возникающих при трении двух тел,
определяются их составом,плотностью,диэлектрической проницае-
мостью,состоянием поверхности и т.д. Трибоэлектричество возни-
кает при просеивании порошков, разбрызгивании жидкостей,трении
газов о поверхности тел и в других подобных случаях.

А.С.N 224151 Способ испытания органических жидкостей на
электролизацию например нефтепродуктов, путем создания в них
трением электростатического потенциала,отличающийся тем,что с
целью одновременного определения скорости образования и ско-
рости утечки возникающих зарядов,образование зарядов происхо-
дит путем вращения твердого тела,помещенного в иследуемую жид-
кость.
Другой интересный пример - электростатический коатулятор.
Он педназначен для очистки воздуха в штреках. Вентилятор гонит
по трубе запыленный воздух. Труба разделяется на два рукова -
один из фторопласта, другой- из оргстекла. Пылинки антрацита
трущиеся о стенки, заряжаются поразному: на фторопласте поло-
жительно,на оргстекле отрицательно.Потом рукова сходятся в об-
щую камеру,где размноженные частицы антрацита притягива, сли-
ваются и па.

9.1.2. При контакте металла с проводником наблюдается
в е н т и л ь н ы й эффект. Контктный слой на границе
металла и полупроводника обладает односторонней проводимостью,
что используется,например, для выпрямления переменного тока в
точечных диодах. При кополу проводников разных типов проводи-
мости образуется р-п п е р е х о д, также обладающий вентиль-
ными свойствами. Это явление используется во многих типах по-
лупроводниковых приборов.

9.2. В металлах полупроводниках процессы переноса зарядов
(электрический ток) и энергии взаимосвязаны,так как осущест-
вляются посредством перемещения подвижных носителей тока -
электронов проводимости и дырок. Эта взаимосвязь обуславливает
ряд явлений (Зеебека,Пельтье, и Томсона),которые называют т е
р м о э л е к т р и ч е с к и м и явлениями.
9.2.1. Эффект Зеебека состоит в том,что в замкнутой
электрической цепи из разнородных металлов возникает т е р м о
э.д.с. если места контактов поддерживаются при разных темпера-
турах. Эта ЭДС зависит только от температуры и от природы ма-
териалов, составляющих термоэлемент. Термо э.д.с. для пар ме-
таллов может достигать 50 мкВ/градус; в случае
полупроводниковых материалов величина термо э д с выше (10 во
2-ой + 10 в 3-ей мкВ/градус).

А.С. N 263969: Электротермический способ дефектоскопии
заключающийся в том,что контролируемую зону нагревают пропус-
кая через нее в течение определенного времени постоянный по
величине электрический ток,измеряютпри помощи термопары-датчи-
ка температуры ее нагрева и судят о наличии дефекта по откло-
нению этой температуры от температуры нагрева бездефектной зо-
ны сварного соединения, отличающийся тем, что с целью
контроля зоны сварного соединения двух разных металлов, напри-
мер, контактных узлов радиодеталей, в качестве термопары-дат-
чика используют термопару, образованную соединенными металла-
ми.

Для проверки качества сварного шва снимают распределение
термоэлектрического потенциала поперек шва. Пики и впадинылс
ш0,0щ на кривых распределения говорят о неоднородности шва, а
их величина - о степени неоднородности. Быстро и наглядно.

Если в разрыв одной из ветвей термоэлемента включить пос-
ледовательно любое число проводников любого состава,все спаи
(контакты) которых поддерживаются при одной и тойже температу-
ре, то термо э.д.с. в такой системе будет равна термоэдс ис-
ходного элемента.

А.С. N 531042: Термопара, содержащая защитный чехол,тер-
моэлектроды с электрической изоляцией, рабочие концы которых
снабжены снабжены токопроводящей перемычкой,образующей изме-
рительный спай,отличающийсятем,что с целью увеличения срока
службы термопары в условиях повышенной вибрации и больших ско-
ростей нагрева, измерительный спай термопары выполнен в виде
слоя порошкообразного металла,расположенного на дне защитного
чехла.

При измерении физического состояния веществ, участвующих
в контакте изменяется и величина термо э.д.с.

А.С.N 423024:Способ распознавания систем с ограниченной и
неограниченной взаимной растворимостью компонентов по темпера-
турной зависимости термо э.д.с.,отличающейся тем,что с целью
повышения надежности распознавания измеряют термо э.д.с. кон-
такта двух исследуемых образцов

Между металлом, сжатым всесторонем давлением, и темже
металлом, находящемся при нрмальном давлении тоже возникает
термо э.д.с.
Например, для железа при температуре 100 градусов С и
давлении 12 кбар,термоэдс равна 12,8 мкВ.При насыщении метал-
ла или сплава в магнитном поле относитель тогоже вещества без
магнитного поля возникает термоэдс порядка 09мкВ/градус

9.2.2 Эффект П е л ь т ь е обратен эффекту Зеебека.
При прохожд тока через спай различных металлов кроме джо-
удева тепла доплнительно выделяется или поглощается, в зависи-
мости от направления тока,некоторое колличество тепловых (спай
сурьма-висьмут при 20градусах С -10,7мкал/Кулон).При этом кол-
личество теплоты пропорционально первой степени тока.

Патент США N 3757151: Для увеличения отношение сигнал шум
ФЭУ предлогается способ охлаждения фотокатодов термоэлектри-
ческими элементами,расположенными внутри вакуумной оболочки
ФЭУ.

Заявка ФРГ N 1297902: Холодильник устройства для отбора
газа, в котором отвод конденсата составляет одно целое с холо-
дильником. На внутренней стороне полого конуса закреплены хо-
лодные спаи элементов Пельтье и от него ответвляется трубопро-
вод для отбора измерительнонго газа. Холодильник,отличается
тем,что в качестве генератора тока,потребляемыми элементами
Пельтье,предусмотрена батарея термоэлементов,горячие спаи ко-
торых находятся в канале дымовых газов,а холодные спаи - во
внешнем пространстве.

9.2.3. Явлением Томсона называют выделение или поглощение
теплоты,избыточнойнад джоулевой,при прохождении тока по нерав-
номерно нагретому однородному проводнику или полупроводнику.

9.3. При контакте тел с вакуумом или газами наблюдается
электронная эмиссия - выпускание электронов телами под влияни-
ем внешних воздействий: нагревания (теплоэлектронная эмиссия)
потока фотонов (фотоэмиссия),потока электронов (вторичная
эмиссия),потока ионов,сильного электрического поля (автоэлект-
ронная или холодная эмиссия),механических или других "портящих
структуру" воздействий (акзоэлектронная эмиссия)

Во всех видах эмиссий, кроме автоэлектронной, роль внеш-
них воздействий сводится к увеличению энергетии части электро-
нов или отдельных электронов тела до значения,позволяющего им
преодолеть потенциальный порог на границе тела с последующим
выходом и вакуум или другую среду.

А.С.N 226040:Способ контроля глубины нарушенного поверх-
ностного слоя полупроводниковых пластин, отличающихся тем,что
с целью обеспечения возможности автоматизации и упрощения по-
цесса контроля,пластину нагревают до температуры,соответству-
ющей максимуму э к з о э л е к т р о н н о й э м и с с и,
которую контролируют одним из известных способов, а по поло-
жению пика эмиссии определяют глубину нарушенного слоя.

А.С.N 513460: Э л е к т р о н н а я т у р б и н а,
содержащая помещенные в вкуумный баллон катод и анод и
размещенный между ними ротор с лопастями, отличающийся тем,
что с целью увеличения крутящегося моментана валу турбины ее
ротор вполнен ввиде набора соосных цилиндров с лпастями, между
цилиндрами роторов установлены неподвижные направляющие лопат-
ки имеют покрытие, обеспечивающее вторичную электронную эмис-
сию, например, сурьмяно-цезиевое.

9.3.1. В случае автоэлектронной эмиссии внешнее электри-
ческое поле превращают потенциалный порог на границе тела в
барьер конечной ширины и уменьшает его высоту относительно вы-
соты первоначального порога,вследствии чего становиться воз-
можным квантовомеханическое тунелирование электронов сквозь
барьер. При этом эмиссия происходит без затраты энергии элект-
рическим полем.

А.С. N 488268: Способ измерения обьемной концентрации уг-
леводородов в вакуумных системах путем термического разложения
углеводородов на нагретом острийном автокатоде и регистрации
времени накопления пиролетического углерода до одной из эта-
лонных концентраций,отличающихся тем,что с целью повышения
точности измерения время накопления углерода регистрируют по
изменению значения автоэлектронного тока.

9.3.2. Наличие на поверхности металла тонких диэлектри-
ческих пленок в сильныь полях не мешает походу электронов че-
рез потенциальный барьер.Это явление называется э фф е к т о м
М о л ь т е р а.

А.С. N.119712: Электронно-лучевая запоминающая трубка с
экранными сетками, отличающаяся тем,что с целью хранения запи-
си неограничено долгое время одна из экранных сеток,служащая
потенциалоносителем, изготовлена из металлов, излучающих вто-
рично-электронную эмиссию,покрытых пленкой диаэлектрика и об-
ладающих эффектом.

9.3.3. Туннелирование электронов по потенциальным барь-
ерам широко используется в специальных полупроводниковых
приборах туннельных диодах. На высоту тунельного барьера можно
влиять не только электрическим полем, но и другими воздействи-
ями

Патент Франции N 2189746: Устройство пзволяющее обнаружи-
вать магнитные домены с внутренним диаметром не более 1 мк,
основано на определении изменения уровня Ферми иследуемого
электрода по изменению высоты туннельного барьера и по его
воздействию на величину сопротивления,туннельного пере. Уст-
ройство применимо в магнитных долговременных и оперативных за-
поминающих устройствах.

А.С.N 286274: Устройство для измерения контактного давле-
ния ленты на магнитную головку,содержащее упругие элементы и
датчики, отличающиеся тем,что с целью осуществления одновре-
менно интегрального и дискретного измерения указанного давле-
ния, устройство измерения выполнено в виде полуцилиндра, сос-
тоящего из упругих элементов, образующих на корпусе магнитной
головки, при этом другой край полуцилиндра выполнен свободным
, а под каждой полосой гребенки установлен датчик,например, с
туннельным эффектом.

Г.Е.Зильберман. Электричество и магнетизм.М.,"НАУКА",1970
К.9.1 "Юный техник",N.3 стр.17,1976, А.С.484896,461343
К 9.2. А.С.464183 патент ФРГ 1295100
К 9.3. Таблица физических величин. М.,"Атомиздат",
1976,стр.444

ГАЛЬВАНО И ТЕРМОМАГНИТНЫЕ ЯВЛЕНИЯ.

10.1. Гальваномагнитные явления - это совокупность явле-
ний, возникающих под действием магнитного поля в проводимых
проводимых, по которым протекает электрический ток. При этом:

10.1.1. В направлении перпендикулярном направлениям маг-
нитного поля и направлению тока, возникает электрическое поле
(эффект Эолла).

Коэффицент Холла может быть положительным и отрицательным
и даже менять знак с изменением температуры. Для большинства
металлов наблюдается почти полная независимость коэффициента
Холла от температуры. Резко аномальным эффектом Холла обладает
висмут, мышьяк и сурьма. В ферромагнетиках наблюдается особый,
ферромагнитный эффект Холла. Коэффициент Холла достигает мак-
симума в точкке Кюри, а затем снижается.

А.с. 272 426: Способ измерения магнитной индукции в об-
разце из магнитотвердого материала путем помещения испытуемого
образца во внешнее магнитное поле, отличающийся тем, что с
целью повышения точности и сокращении времени измерения через
поперечное сечение образца пропускают электрический ток и из-
меряют Э.Д.С. Холла на его основных гранях, по которой судят
об искомой величине.

А.с. 2 836 399: Устройство для измерения среднего индика-
торного давления в цилиндрах поршневых машин, содержащее дат-
чик, преобразующий давление и электрический сигнал, датчик по-
ложения поршня, усилитель, электронный вычислительный блок и
указатель, отличающийся тем, что сцелью упрощения конструкции,
в качестве датчика положения поршня и множительного элемента
вычислительного блока, использован датчик Холла, магнитная
система которого жестко связана с коленчатым валом двигателя,
а активный элемент соединен через усилитель с выходом датчика
давления, при этом выход датчика Холла через интегратор подк-
люченк указателю.

10.1.2. В направлении перпендикулярном к направлению маг-
нитногополя и направлению тока возникает температурный гради-
ент (разность температур) эффект Эттингсгаузена.

А.с. 182 778: Низкотемпературное устройство на основе
эффектов Пельтье и Эттингкгаузена, отличающийся тем, что с
целью одновременного использования термоэлектрической батареи
как генератора холода и как источника магнитного поля для ох-
ладителя Эттингсгаузена, термобатарея выполнена ввиде цилинд-
рического соленоида.

10.1.3. Изменяется сопротивление проводника, что эквива-
лентно возникновению добавочной разности потенциалов вдоль
направления электрического тока. Для обычных металлов это из-
менение мало - порядка 0,1% в поле 20 кв, однако для висмута и
полупроводников величина изменения может достигать 200% (в по-
лях 80 кв.).

А.с. 163 508: Универсальный гальваномагнитный датчик, со-
держащий плоские токовые и холловские электроды точечность
контакта которых обеспечивает перемычки в теле датчика, отли-
чающийся тем, что с целью уменьшения эффекта закорачивания
холловского напряжения токовыми электродами использования од-
ного и того же единого гальваномагнитного датчика как датчика
э.д.с. Холла или как датчика магнитосопротивления, или как ги-
ратора, токовые электроды расположены вдоль эквипотенциальных
линий поля Холла или под острым углом к ним, например по реб-
рам плоского датчика, а для перехода из одного используемого
эффекта к другому применено коммутирующее устройство и регули-
руемый источник питания.

10.1.4. Термомагнитные явления - совокупность явлений,
возникающих под действием магнитного поля в проводниках, внут-
ри которых имеется тепловой поток.
при поперечном замагничивании проводника возникает следу-
ющие термомагнитные явления:

10.2.1. В направлении перпендикулярном градиенту темпера-
тур и направлению магнитного поля возникает градиент
температур (эффект Риге-Ледюка).
10.2.3. При продольном намагничивании образца изменяется
сопротивление, термо - э.д.с., теплопроводность (появляется
тепловой поток).
А.с. 187 859: Устройство для измерения э.д.с. поперечного
эффекта Кернота-Эттингсгаузена в полупроводниковых материалах,
содержащее нагреватель, холодильник и термопары-зонды, отлича-
ющиеся тем, что с целью исключения неизотермической части э.д.
с. Нернота-Эттингсгаузена, уменьшения тепловых потерь и исклю-
чения цикуляционных токов на контакте полупроводникизмеритель-
ные зонды, термопары-зонды подведены к поверхности исследуемо-
го образца через массивные металлические блоки холодильника
инагревателя, находяшиеся в хорошем тепловом контакте с образ-
цом, электрически изолированные от последнего.
В этом авторском свидетельстве физический эффект не при-
менен для решения задач. Оно просто демонстрирует, что исполь-
зование эффектов требует как их знания, так и решения сложных
электрических задач.
10.2.4. Электронный фототермомагнитный эффект - появление
э.д.с. в однородном проводнике (полупроводнике или металле),
помещенном в магнитном поле, обусловленное поглощением элект-
ромагнитного получения свободными носителями заряда. Магнитное
поле должно быть перпендикулярно потоку излучения. Этот эффект
применяется в высокочувствительных 10 в минус тринадцатой сте-
пени вт, сек1/2 приемниках длинноволнового инфракрасного излу-
чения. Постоянная времени эффекта - 10 в минус седьмой степени
сек.


Л И Т Е Р А Т У Р А

к 10.1 "Радио", N'9, 1964, стр.53, А.с.249473, 255996;
к 10.2 А.с.476463.

ЭЛЕКТРИЧЕСКИЕ РАЗРЯДЫ В ГАЗАХ.

11.1 В обычных услх любой газ,буть то воздух или пары се-
ребра, является изолятором. Для того,чтобы под действием
электрического полявозник ток, требуется каким-то способом ио-
низовать молекулы газа. Внешние проявления и характеристики
разрядов в газе чрезвычайно разнообразны,что объясняется широ-
ким диапазоном параметров и элементарных процессов,определяю-
щих прохождения тока через газ.Кпервым относятся состав и дав-
ление газа, геометрическая конфигурация разрядного
пространства, частота внешнего электрического поля,сила тока и
т.п.,ко вторым - ионизация и возбуждение атомов и молекул га-
за,рекомендация удары второго рода,упругое рассеяние носителей
заряда,различные виды эмиссии электронов. Такое многообразие
управляемых факторов создает предпосылки для весьма широкого
пименения газовых разрядов.

11.1.1.П о т е н ц и а л о м и о н и з а ц и и называет-
ся энергия, необходимая для отрыва электрона от атома или ио-
на. Для нейтронных невозбужденных атомов величина этой энергии
изменяется от 4 () до 24 (Не) электрон-вольт. В случае моле-
кул и радикалов энергия разрывов связей лежит в пределах 0,06+
11,1 э.в.()

11.1.2. Ф о т о и о н и з а ц и я а т о м о в. Атомы мо-
гут понизироваться при поглащении квантов света, энергия кото-
рых равна потенциалу ионизации атома или превосходит ее.

11.1.3. П о в е р х н о с т н а я и о н и з а ц и я. Ад-
сорбированный атом может покинуть нагретую поверхность как в
атомном так и в ионизованном состоянии. Для ионизации необхо-
димо, чтобы работа выхода поверхности была больше энергии ио-
низации уровня валентного электрона адсорбированного атома
(щелочные металлы на вольфраме и платине)

11.1.4.Процессы ионизации используются не только для воз-
буждения различных видов газовых разрядов,но и для интенсифи-
кации различных химических реакций и для управления потоками
газов с помощью электрических магнитных полей (см.6.1.1 и 6.7.
2.).

А.С.N 187894. Способ электродуговой сварки с непрерывной
и импульсной моделей энергии,отличающийся тем,что с целью по-
вышения точности выполнения сварного шва и облегчения зажига-
ния дуги,ионизирующиедуговой промежуток.

А.С. N 444818: Способ нагрева стали в окислительной ат-
мосфере, отличающийся тем,что с целью снижения
обезуглеродивания, в процессе нагрева осуществляют ионизиро-
ванные атмосферы.

А.С. 282684: Способ измерения малых потоков газа, выпус-
каемых в вакуумный объем,отличающийся тем,что с целью повыше-
ния точности измерения,газ перед запуском ионизируют и
формируют в однородный полный пучек, а затем вводят ионный пу-
чок в вакуумный объем,где его нейтрализуют на металлической
мишени, и по току ионного пучка судят о величине газового по-
тока.

11.2. Обычно газовй разряд поисходит между проводящими
электродами создающими граничную конфигурацию электрического
поля и играющими значительную роль в качестве источников и
стоков заряженных частиц. Однако наличие электродов необяза-
тельно (высокочастотный тороидальный заряд).

11.3. При достаточно больших давлениях и длинах разрядно-
го промежутка основную роль в возникновении и протекании раз-
ряда играет газовая среда. Поддержание разрядного тока
определяется поддерживанием равновесной ионизации газа, проис-
ходящий при малых токах за счет гауноендовских процессов кас-
кадной ионизации, а при больших токах за счет термической ио-
низации.

При уменьшении давления газа и длины разрядного
промежутка все большую роль играют процессы на электродах; при
P 0,02+0,4 мм.рт.ст/см процессы на электродах становятся опре-
деляющими.

11.4. При малых разрядных токах между холодными электро-
дами и достаточно однородном поле основным типом разряда явля-
ется тлеющий разряд, характеризующийся значительным (50 - 400
В) катодным падением потенциала. Катод в этом типе разряда ис-
пускает электроны под действием заряженных частиц и световых
квантов, а тепловые явления не играют роли в поддерживани раз-
ряда.

Патент США 3 533 434: В устройстве, предназначенном для
считывания информации с перфорированного носителя, используют-
ся лампы тлеющего разряда, имеющие невысокую стоимость, и,
кроме того, обладающие высокой надежностью. Освещение ламп че-
рез перфорации носителя информации источником пульсирующего
света вызывает зажигание некоторых из них, продолжающиеся и
после исчезновения светового импульса. Таким образом лампы
тлеющего разряда обеспечивают хранение информации и не требуют
дополнительного запоминающего устройства.

11.5. Примесь молекулярных газов в разрядном промежутке
при короноом разряде приведет к образованию страт, т.е. распо-
ложенных поперек градиента электрического поля темных и свет-
лых полос.

11.6. Тлеющий разряд в сильно неоднородном электрическом
поле и значительном (P 100 мм.рт.ст.) давлении называют ко-
ронным. Ток короного разряда имеет характер импульсов, вызыва-
емых электронными лавинами. Частота появления импульсов 10-100
кГц.

11.7. Дуговой разряд наблюдается при силе тока не менее
нескольких ампер. Для этого типа разряда характерно малое (до
10 В) катодное падение потенциала и высокая плотность тока.
Для дугового разряда существенна высокая электронная эмиссия
катода и термическая ионизация в плазменном столбе. Спектр ду-
ги обычно содержит линии материала катода.

А.с. 226 729: Способ выпрямления переменного тока с по-
мощью газоразрядного промежутка с полым катодом при низком
давлении газа, соответствующим области левой ветви кривой Па-
шена, отличающийся тем, что с уелью повышения выпрямленного
тока и уменьшения падения напряжения в течении проводящей час-
ти периода, при положительном потенциале на аноде систему
"анод-полый катод" переводить в режим дугового разряда.

11.8. Искровой разряд начинается с образования стример
саморапространяющихся электронных лавин, образующих проводящий
канал между электродами. Вторая стадия искрового разряда -
главный разряд - происходит вдоль канала, образованного стри-
мером, а по свим характеристикам близка к дуговому разряду,
ограниченному во времени емкостью электродов и недостаточ-
ностью питания. При давлении 1 атм., материал и состояние
электродов не оказывает влияния на пробивное напряжение в этом
виде разряда.

Расстояние между сферическими электродами, соответствую-
щее возникноаению искрового пробоя весьма часто служит для из-
мерения высокого напряжения.

А.с. 272 663: Способ определения размера макрочастиц с
подачей их на заряженную поверхность, отличающийся тем, что с
целью повышения точности измерения, определяют интенсивность
световой вспышки, сопровождающей электрический пробой между
заряженной поверхностью и приближающейся к ней частицей и по
интенсивности судят о размере частицы.

11.9. Факельный разряд - особый вид высокочастотного од-
ноэлектродного разряда. При давлениях, близких к атмосферному
или выше его, факельный разряд имеет форму пламени свечи. Этот
вид разряда может существовать при частотах 10 МГц, при доста-
точной мощности источника.

11.10. При изучении заряженного острия наблюдается инте-
ресный эффект - так называемое стекание зарядов с острия. В
действительности никакого стекания нет. Механизм этого явления
следующий: имеющиеся в воздухе в небольшом количестве свобод-
ные заряды в близи острия разгоняются и, ударяясь об атомы га-
за, ионизируют их. Создается область пространственного заряда,
откуда ионы того де знака, что и острие, выталкиваются полем,
увлекая за собой атомы газа. Поток атомов и ионов создает впе-
чатление стекания зарядов. При этом острие разряжается, и од-
новременно получает импульс, направленный против острия.

Несколько примеров на применение коронного разряда:

А.с. 485 282: Устройство для кондиционирования воздуха,
содержащее корпус с поддоном и патрубками для подвода и отвода
воздуха и размещенный в корпусе воздуховоздушный теплообменник
с каналами орошаемыми со стороны одного из потоков, отличаю-
щийся тем, что с целью повышения степени охлаждения воздуха
путем интенсификации испарения коронирующие воды, по оси оро-
шаемых каналов теплообменника установлены электроды, прикреп-
ленные к имеющему заземление корпусу с помощью изоляторов и
подключенные к отрицательному полюсу источника напряжения.

Заявка СССР 744429/25: Авторы предлагали измерять диаметр
проволоки тоньше пятидесяти микрон с помощью коронного разря-
да. Как известно, коронный разряд ввиде светящегося кольца
возникает вокруг проводника, если к проводнику приложить высо-
кое напряжение. При определении сечения проводника коронный
разряд будет иметь вполне определенные характеристики. Стоить
изменить сечение, тотчас изменяется и характеристика коронного
разряда.


Л И Т Е Р А Т У Р А

Таблицы физических величин. М.,"Атомиздат", 1976, стр.427-439.

к 11.1 А.с.179599.
к 11.4 А.с.234527.

ЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ.

Эффекты, связанные с относительным движением двух фаз под
действием электрического поля, а также возникновение разности
потенциалов при относительном смещении двух фаз, на границе
между которыми существует двойной электрический слой, называ-
ется электрокинетическими явлениями.

12.1. Электроосмос (электроэндоосмос) - движение жидкос-
тей или газов через капилляры, твердые пористые диафрагмы и
мембраны, а также через слои очень мелких частиц под действием
внешнего электрического поля (см.3.6.1.).

Электроосмос применяется при очистке коллоидных растворов
от примесей, для очистки глицерина, сахарных сиропов, желати-
на, воды, при дублении кож, а также при окраске некоторых ма-
териалов.

12.2. Эффект обратный электроосмосу - возникновение раз-
ности потенциалов между концами капилляра, а также между
противоположными поверхностными диафрагмами мембраны для дру-
гой пористой среды при прода влении через них жидкости (потен-
циал течения).

12.3. Электрофорез (катофорез) - движение под действием
внешнего электрического поля твердых частиц, пузырьков газа,
капель жидкости, а также коллоидных частиц, находящихся во
взвешенном состоянии в жидкой или газообразной среде.

Электрофорез применяют при определении взвешенных в жид-
кости мелких частиц, не поддающихся фильтрованию или сжиманию,
для обезвоживания торфа, очистки глины или каолина, обезвожи-
вания красок, осаждение каучука из латекса, разделения маслян-
ных эмульсий, осаждения дымов и туманов.

А.с. 308 986: Способ снижения пористотости керамических
изделий путем насыщения их дисперсионным материалом, отличаю-
щийся тем, что сцелью повышения электрической прочности, насы-
щения проводят за счет электрофоретического осаждения твердых
частиц на суспенции с наводной дисперсионной средой.

12.4. Эффект обратный электрофорезу - возникновение раз-
ности потенциалов и жидкости в результате движения частиц,
вызванного силами не электрического характера, например, при
оседании частиц в поле тяжести, при движении в ультразвуковом
или центробежном поле (седментационный потенциал или потенциал
оседания).

12.5. Электрокапиллярные явления - явления связанные с
зависимостью величины поверхностного натяжения на границе раз-
дела электрод-раствор от потенциала электрода (см.3.3.6.).


Л И Т Е Р А Т У Р А

Краткая химическая энциклопедия. М.,1967, т.5, стр.934-936.

СВЕТ И ВЕЩЕСТВО.

13.1. Свет. Видимое. УФ и ИК-излучение. Свет это совокуп-
ность электромагнитных волн различной длины. Диапазон длин
волн видимого света - от 0,4 до 0,75 мкм. К нему примыкают об-
ласти невидимого света - ультрафиолетовая (от 0,4 до 0,1 мкм)
и инфракрасная (от 0,75 до 750 мкм).

Видимый свет доносит до нас большую часть информации из
внешнего мира. Помимо зрительного восприятия, свет можно обна-
ружить по его тепловому эффекту, по его электрическому дейс-
твию или по вызываемой им химической реакции. Восприятие света
сетчаткой глаза является одним из примеров его фотохимического
действия. В зрительном восприяти определенной длине волны све-
та сопутствует определенный цвет. Так излучение с длиной волны
0,48-0,5 мкм будет голубым; 0,56-0,59 - желтым; 0,62-0,75 -
красным. Естественный белый свет, есть совокупность волн раз-
личной длины, распространяющихся одновременно. Его можно раз-
ложить на составляющие и выцедить их с помощью спектральных
приборов (призм, дифракционных решеток, светофильтров).

Как и всякая волна, свет несет с собой энергию, которая
зависит от длины волны (или частоты) излучения.

Ультрафиолетовое излучение, как более коротковолновое,
характеризуется большей энергией и более сильным взаимодейс-
твием с веществом, чем обьясняется широкое его использование в
изобретательской практике. Например, излучение ультрафиолетом
может инициировать или усиливать многие химические реакции.

А.с. 489 602: Способ соединения металлов путем заполнения
зазора между соединяемыми деталями металлом, полученным разло-
жением его химического соединения, отличающийся тем, что с
целью устранения термического воздействия на соединяемые дета-
ли, разложение химических соединений осуществляет облучением
ультрафиолетовым светом.

Существенно влияние ультрафиолета на биологические обьек-
ты, например, его бактерецидное действие.


Следует помнить, что ультрафиолетовое излучение очень
сильно поглощается большинством веществ, что не позволяет при-
менить при работе с ним обычную стеклянную оптику. До 0,18 мкм
исползуют кварц, фтористый литий, до 0,12 мкм - флюорит; для
еще более коротких волн приходится применять отражательную оп-
тику.

Еще более широко в технике используют длинноволновую
часть спектра - инфракрасное излучение. Отметить здесь приборы
ночного видения, ИК-спектроскопию, тепловую обработку материа-
лов, лазерную технику, измерение на расстоянии температуры
предметов.

А.с. 269 400: Способ противопожарного контроля волокнис-
того материала, например, хлопка-сырца, подаваемого по трубоп-
роводу к месту его хранения, отличающийся тем, что с целью по-
вышения надежности хранения, контроль осуществляется
посредством расположенных по периметру трубопровода датчиков,
реагирующих на инфракрасное излучение.

А.с. 271 550: Способ ремонта асфальтобетонных дорожных
покрытий на основе применения инфракрасного излучения, отлича-
ющийся тем, что с целью обеспечения ремонта в зимнее время
вначале создают тепловую защиту непосредственно в месте произ-
вдства работ путем создания зон положительных температур пос-
редством источников инфракрасного ихлучения, затем разогревают
применяемые в качестве исходного материала асфальтобетонные
брикеты одновременно с ремонтируемым участком дорожного покры-
тия до пластического состояния при помощи инфракрасных лучей.

Интересное свойство ИК-лучей обнаружил недавно польские
ученые: прямое облучение стальных изделий светом инфракрасных
ламп сдерживает процессы коррозии не только в условиях обычно-
го хранения, но и при повышении влажности и содержания сернис-
тых газов.

Сильным изобретательским приемом является переход от од-
ного диапазона излучения к другому.

А.с. 232 391: Способ определения экспозиции засветки
фоторезисторов на основе диасоединений и азидов в процессе фо-
толитографии, отличающийся тем, что с целью улучшения воспро-
изводимости и увеличения выхода годных приборов, полупроводни-
ковый эпитаксиальный материал с нанесеным на него фоторезистом
облучают ультрафиолетовым или видимым светом, причем экспози-
цию определяют по времени исчезновения полосы поглощения плен-
ки фоторезиста в области 2000-2500 см. в минус первой степени
. Здесь облучают коротковолновым светом, а изменение свойств
регистрируют по поглощению в инфракрасной области - 2000 см. в
минус первой степени соответствуют длине волны 3,07 мкм.

13.1.1. Световое излучение может передавать свою энергию
телу не только нагревая его или возбуждая его атомы, но и вви-
де механического давления. Световое давление проявляется в
том, что на освещаемую поверхность тела в направлении расп-
ространения света действует распределенная сила, пропорцио-
нальная плотности световой энергии и зависящая от оптических
свойств поверхности. Световое давление на полностью отражающую
зеркальную поверхность вдвое больше, чем на полностью поглоща-
ющую при прочих равных условиях.

Обьяснить это явление можно как с волновой, так и с кор-
пускулярной точек зрения на природу света. В первом случае это
результат взаимодействия электрического тока, наведенного в
теле электрическим полем световой волны, с ее магнитным полем
по закону Ампера. Во втором - результат передачи импульса фо-
тонов поглощающей или отражающей стенке.

Величина светового давления мала. Так, яркий солнечный
свет давит на 1 кв.м. черной поверхности с силой всего лишь 0,
4 мГ. Однако простота управления световым потоком, "оксеон-
тактность" воздействия и "избирательность" светового давления
в отношении тел с различными поглощающими и отражающими свойс-
твами позволяют с успехом использовать это явление в изобрета-
тельстве (например, фотонная ракета).

Согласно патенту США 3 590 932: световое давление исполь-
зуется в микроскопах для уравновешивания малых изменений массы
или силы. Измерительное фотоэлектрическое устройство определя-
ет, какая величина светового потока, а следовательно исветово-
го давления, потребовалась для компенсации изменения массы об-
разца и восстановления равновесия системы.

А.с. 174 432: Способ перекачки газов или паров из сосуда
в сосуд путем создания перепада давления на разделяющей оба
сосуда перегородке, имеющей отверстие, отличающийся тем, что с
целью повышения эффективности откачки, на отверстие в перего-
родке фокусируют световой пучек, излучаемый, напрмер, лазером.

2. Способ по п.1 отличающийся тем, что с целью осущест-
вления избирательной отакачки газов или паров и, в частности,
с целью разделения изотопных смесей газов или паров, ширину
спектра излучения избирают меньше частотного разноса центров
линий поглощения соседних с них компонентов, при этом частоту
излучателя настраивают на центр линии поглощения откачиваимого
компонента.

13.2. Отражение и преломление света.

При падении параллельного пучка света на гладкую поверх-
ность раздела двух прозрачных изотропных сред часть света от-
ражается обратно, а другая часть проходит во вторую среду, при
этом направление пучка света меняется; происходит преломление
света.

Угол отражения равен углу падения, а угол преломления
связан с углом падения соотношением: где п1 и п2 - показатели
преломления сред, и - углы падения и преломления.

Показатели преломления обычных газов (при нормальных ус-
ловиях) близки к 1, для стекл эта величина порядка от 1,4 до
1,7.

Эффекты отражения и преломления лежат в основе работы
всех оптических систем, которые позволяют передавать световую
энергию и изображения, фокусировать свет в мощные пучки, раз-
лагать его в спектр (см. Дисперсия).

США патент 3 562 530: Способ получения и нагревания не-
загрязненных пламоидов заключается в том, что мишень распола-
гается в первой сопряженной фональной точке закрытой камеры,
которая представляет собой зеркально отражающую систему, во
второй фональной точке, сопряженой спервой, генерируют корот-
кий импульс электромагнитной энергии. Эта энергия фокусируется
на мишень, которая нагревается до очень высокой температуры.

Отраженный свет может нести значительную информацию о
форме предмета (а также о структуре его поверхности) как в
случае зеркального, так и диффузного отражения.

А.с. 521 086: Способ определения пайки выводов радиодета-
ле, напрмер, резисторов, при котором производят погружение вы-
вода в каплю расплавленного припоя и регистрируют интервал
времени между соприкосновением вывода с каплей и замыканием
капли над ним, отличающийся тем, что с целью повышения точнос-
ти измерения времени пайки, на поверхность капли припоя нап-
равляют луч света в форме узкой полосы и фиксируют интервал
времени между началом отклонения отраженного от поверхности
капли луча до его возвращения в исходное положение, используя
фотоэлемент, соединенный со счетчиком времени.

А.с.: Способ определения частоты обработки поверхности,
заключающийся в том, что напрвляют световой поток на контроли-
руемую поверхность и регистрируют световой поток, отраженный
от нее, отличающийся тем, что с целью повышения точности изме-
рения, поворачивают контролируемую поверхность вокруг оси,
перпендикулярной плоскости падения светового потока, регистри-
руют угол наклона, при котором отраженный от него световой по-
ток будет составлять заданую часть, например, половину от мак-
симального, и по алгебраической разности определяют чистоту
обработки поверхности.

Процессы отражения и преломления связаны с внутренней
структурой вещества; измерение показателя преломления - один
из важнейших методов структурных исследований (3).

А.с. 280 956: Способ исследования тепловых напряжений на
прозрачных моделях путем просвечивания образца монохроматичес-
ким светом, отличающийся тем,что с целью определения полного
теплового напряжения, вызываемого неоднородным нагревом, пред-
варительно определяют градиент температур в исследуемом образ-
це, измеряют соответствующий ему угол отклонения светового лу-
ча в данной точке, и по полученным данным судят о величине
теплового напряжения.

А.с. 541 484: Способ регулировки температуры размягчения
донного продукта отпарного аппарата в зависимости от изменения
режимного параметра в зоне питания аппарата, отличающийся тем,
что с целью повышения качества регулировки, режимный параметр
корректируют в зависимости от коэффициента преломления дистил-
лярного продукта, выводимого из аппарата.

В общем случае, лучи отраженный и преломленный - это лучи
поляризованного света (см.Поляризация). Степень поляризации
зависит от угла падения. При определенном значении этого угла
(угол Брюстера) отраженный свет полностью линейно поляризован
перпендикулярно плоскости падения. При падении же под углом
Брюстера света, уже поляризованного в плоскости падения, отра-
жения вобще не происходит, не смотря на скачок показателя пре-
ломления (см.Анизотропия и свет).

А.с. 501 377: Акустооптический дефлектор, содержащий
акустооптический эффект и пьезопреобразователь, отличающийся
тем, что с целью увеличения его разрешающей способности с од-
новременным уменьшением потерь света на отражение, входная по-
верхность акустооптического элемента выполнена по отношению к
поверхности, на которой расположен пьезопреобразователь, под
углом, равным сумме угла Брюстера и угла дефракции Брегга для
данного материала, а выходная поверхность - под углом, равным-
разности между углом Брюстера и углом дифракции Брегга.

13.2.1. При определенных условиях может наблюдаться пол-
ное внутреннее отражение света, при котором вся энергия свето-
вой волны, падающей награницу двух двух прозрачных сред со
стороны среды, оптически более плотной, полностью отражается в
эту среду. В частности это явление используется в призмах би-
ноклей и перископов, но диапазон его применения в изобрета-
тельстве гораздо шире (1).

А.с. 287 363: Устройство для измерения температуры, со-
держащее измерительный элемент, установленный в контролируемой
среде, и источник белого света с диафрагмой, отличающийся тем,
что с целью повышения точности измерения температуры и увели-
чения светосилы устройства, измерительный элемент выполнен
ввиде двух прозрачных прямоугольных призм, сложенных наклонны-
ми гранями, между которыми расположен слой прозрачного вещест-
ва с показателем преломления, зависящим от длины волны и тем-
пературы, причем источник света расположен относительно
измерительного элемента так, что ось светового потока наклоне-
на к плоскости входной грани призмы под предельным углом пол-
ного внутренненго отражения.

А.с. 288 464: Устройство для активного контроля распыле-
ния жидкости, выполненное из источника света, воздействующего
через собирательную линзу через фоторезистор, к которому подк-
лючен усилитель, отличающийся тем, что с целью увеличения на-
дежности контроля, на пути света за линзой последователены оп-
тический многогранник полного внутреннего отражения и
охватывающая его изогнутая шторка, образующая с одной из гра-
ней клинообразное входное пространство.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.04 сек.)