АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Механизм токсического действия тяжелых металлов

Читайте также:
  1. Cхема электрическая принципиальная блока ТУ-16. Назначение, принцип действия.
  2. E согласно механизму сотрудничества с системами фермента.
  3. II.1.4. Семантический механизм создания образного сравнения
  4. L.3.2. Процессы присоединения частиц. Механизмы роста.
  5. А) Первые действия Ивана IV
  6. Автоматические действия
  7. АДАПТАЦИЯ К ЗУБНЫМ ПРОТЕЗАМ КАК ПРОЯВЛЕНИЕ ПЛАСТИЧНОСТИ НЕРВНЫХ ЦЕНТРОВ. МЕХАНИЗМЫ АДАПТАЦИИ. РОЛЬ РЕЦЕПТОРОВ СЛИЗИСТОЙ ОБОЛОЧКИ ПОЛОСТИ РТА В АДАПТАЦИИ К ЗУБНЫМ ПРОТЕЗАМ.
  8. Алгоритм действия по диагностике, тактике лечения и ведения больных с нарушениями сердечного ритма
  9. Алкоголизм как результат воздействия информационного вируса.
  10. Алфавит Maple-языка и его синтаксис. Основные объекты (определение, ввод, действия с ними). Числа. Обыкновенные дроби.
  11. Альтернативные действия
  12. Алюминотермическое восстановление оксидов металлов. Характеристики алюминотермического процесса.

Всем известно, что загрязнение окружающей среды соединениями тяжелых металлов: ртути, свинца, кадмия, хрома, никеля и др. металлов – может привести к тяжелым отравлениям.

Механизм токсического действия таких соединений объясняется взаимодействием катионов тяжелых металлов (Мт) с бионеорганическими комплексами. Это можно записать в виде реакции:

МбL + Мт ↔ Мб + МтL

Где МбL – комплекс иона биогенного металла Мб (Fe, Zn, Cu, Co) с биоорганическим лигандом L (например порфирином); Мт – ион тяжелого металла.

Если устойчивость комплекса МтL больше, чем устойчивость МбL, происходит смещение равновесия вправо и в организме накапливаются соединения МтL, что приводит к нарушению нормальной работы организма.

 

Значение комплексных соединений в медицине.

Комплексообразование имеет большое значение для многих биологических процессов. В виде аквакомплексов находятся в крови, лимфе и тканевых жидкостях ионы щелочных и щелочноземельных металлов, выполняющих в организме важные и многообразные физиологические функции. Ионы d – элементов в результате высокой комплексообразующей способности находятся в организме исключительно в виде комплексов с белками и входят в состав гормонов, ферментов, витаминов и других жизненно важных соединений. Некоторые комплексные соединения обладают биологической активностью и применяются в качестве лекарственных препаратов - например витамин В12, участвующий в процессах кроветворения, является комплексом кобальта.

Токсические свойства некоторых веществ обусловлены их высокой комплексообразующей способностью. Например, токсическое действие на организм цианидов и оксида углерода объясняется их способностью образовывать прочные комплексы с катионами железа. Цианиды блокируют атомы железа, входящие в состав дыхательного фермента цитохромоксидазы, в результате прекращается клеточное дыхание. Оксид углерода (СО) связывает железо гемоглобина, вследствие этого гемоглобин утрачивает способность осуществлять транспорт кислорода.

В медицинской практике при лечении многих заболеваний в качестве лекарственных препаратов используются соединения меди, серебра, цинка, кобальта, хрома, золота, платины, ртути и др.

 

Вопросы для самоконтроля

1. Основные положения и понятия координационной теории

2. Классификация комплексных соединений.

3. Комплексообразующая способностьs-р-иd- элементов. Её причины.

4. Природа химической связи в комплексных соединениях с позиций метода валентных связей.

5. Влияние природы комплексообразователя на распределение электронов в ионе - комплексообразователе. Внешнеорбитальные и внутриорбитальные комплексные соединения.

6. Представления о строении металлоферментов и других биокомплексных соединений (гемоглобин, цитохромы, кобаламины).

7. Устойчивость комплексных соединений. Константа нестойкости комплексных соединений, её связь с константой устойчивости.

8. Конкуренция за лиганд или за комплексообразователь: изолированное и совмещенное равновесия замещения лигандов.

9. Общая константа совмещенного равновесия замещения лигандов. инертные и лабильные комплексы.

10. Физико – химические принципы транспорта кислорода гемоглобином.

11. Металло – лигандный гомеостаз и причины его нарушения.

12. Механизм токсического действия тяжелых металлов и мышьяка на основе теории жестких и мягких кислот и оснований (ЖМКО.

13. Термодинамические принципы хелатотерапии.

14. Механизм цитотоксического действия соединений платины.

15. Значение комплексных соединений

 


1 | 2 | 3 | 4 | 5 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)