|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Опорные геодезические сетиСлужат исходными данными (координаты и высоты) для выполнения геодезических работ. В зависимости от наличия координат или высот бывают плановые и высотные. а) Государственная геодезическая сеть. Плановые сети строятся способами триангуляции, трилатерации и полигонометрии 1, 2, 3, 4 классов. Триангуляция строится в виде треугольников (рис. 70), в которых измеряют горизонтальные углы, уравнивают их (считают и распределяют полученную угловую невязку), от базисных сторон (измеренных с большой точностью) по теореме синусов вычисляют горизонтальные проложения сторон треугольников, дирекционные углы, приращения координат и координаты пунктов. В качестве исходных координат для построения сетей 1-го класса берут координаты пунктов, полученных с высокой точностью из астрономических измерений. Эти пункты называют пунктами Лапласа. Второй класс развивают от первого, третий от пунктов первого и второго и так далее, то есть сгущают сети высокого класса точности сетями более низких классов. Для текущих геодезических работ чаще всего не нужны исходные данные, полученные с высокой точностью, кроме того, требуется большая густота пунктов, поэтому требуется развивать сети низких классов. Полигонометрию строят в виде замкнутых или разомкнутых ходов, образующих полигоны. В них измеряют при помощи высокоточных и точных теодолитов горизонтальные и вертикальные углы и длины сторон инварными проволоками или дифференциальными светодальномерами. По полученным измерениям считают координаты пунктов. Закрепляют пункты государственной геодезической сети геодезическими центрами, грунтовыми и стенными реперами. Они несут координаты геодезического пункта. Грунтовый репер представляет собой металлическую трубу, с бетонным якорем, которая закладывается в пробуренную скважину и заливается бетоном. Реперы закладывают ниже глубины сезонного промерзания грунта. Верх репера находится на расстоянии 30 – 50 см ниже поверхности земли. После закладки репер окапывается в радиусе 1 метра или оформляется в виде люка и привязывается не менее чем к двум постоянным предметам местности с составлением абриса привязки. Координаты и высоту репера можно определять не раньше чем через неделю со дня закладки. Над грунтовыми реперами устанавливают наружные знаки в виде сигналов и пирамид для обеспечения видимости. Их высота зависит от высоты препятствия и бывает до 50 метров. Ось визирных цилиндров наружных знаков проходит через центр репера, над которым он установлен. Каталог координат и высот реперов и абрисы привязки сдают в геодезические отделы областного или городского управления архитектуры и градостроительства или Госгеонадзор. Стенные реперы закладывают путем бетонирования металлических стержней или уголков в стены и фундаменты капитальных сооружений, водонапорных башен, в устои мостов и т.д., обычно на высоте 0,7 – 1 м над поверхностью земли. Таблица 2 – Характеристика сетей триангуляции и полигонометрии
В скобках указаны данные о полигонометрии. Высотная государственная геодезическая сеть представляет собой нивелирные сети 1, 2, 3, 4 классов. Пункты плановой геодезической сети могут использоваться как пункты нивелирования. Методика выполнения работ изложена в Инструкции по нивелированию 1, 2, 3, 4 классов. Требования к построению сетей нивелирования представлены в таблице 3. Таблица 3 – Характеристика сетей нивелирования
Пункты высотной государственной сети закрепляют на местности капитальными грунтовыми реперами, стенными реперами или марками. б) Геодезические сети сгущения – это триангуляция и полигонометрия 1, 2 разрядов, развиваемые от пунктов государственной геодезической сети. Основные параметры сетей представлены в таблице 4. В скобках данные для полигонометрии 1-го, 2-го разрядов.
Рис. 70. Схема триангуляции «цепочка треугольников»
Таблица 4 – Основные параметры сетей сгущения 1-го и 2-го разрядов
Высотное положение пунктов определяют методом нивелирования 4 класса и техническим нивелированием (допустимая невязка ± 50 мм √L). в) Съемочная геодезическая сеть (съемочное обоснование) создается с целью сгущения геодезической сети для производства топографических съемок. Способы развития – микротриангуляция, теодолитно-нивелирные ходы, тахеометрические и мензульные ходы, прямые, обратные и комбинированные засечки. Высоты пунктов получают методами геометрического нивелирования (микротриангуляция, теодолитно-нивелирные ходы), тригонометрического нивелирования (тахеометрические ходы). Длины сторон в ходах в первых двух случаях измеряют при помощи светодальномеров, мерных лент или рулеток, во втором – нитяным дальномером. Камеральные работы заключаются в следующем: контроль полевых документов – проверка графического материала, повторение всех вычислений, проведенных в полевых условиях; вычисление углов наклона и горизонтальных проложений длин сторон полигона; вычисление ведомости координат точек теодолитного хода (методические указания по выполнению расчетно-графических работ, часть 1). г) Разбивочная геодезическая сеть служит для переноса в натуру и возведения сооружений – высокоточной и технической точности разбивки. В настоящее время для создания геодезических сетей используют методы космической геодезии. Российская спутниковая система ГЛОНАСС (ГЛОбальная Навигационная Спутниковая Система) включает 24 спутника (создана в период 1982-1995 гг.). Спутники находятся в 3-х орбитальных плоскостях: 1-я – 1-8 спутники, 2-я – 9-16, 3-я – 17-24. Расстояния между ними по широте 45°. Американская система NAVSTAR GPS (глобальная система позиционирования) содержит по четыре спутника в 6-ти орбитальных плоскостях. Высота орбиты навигационных спутников относительно центра масс ГЛОНАСС – 25 500 км, NAVSTAR –26 600 км. Спутники характеризуются радиосигналом высокой точности ВТ и стандартной точности СТ. Способ разделения сигналов NAVSTAR – кодовый, ГЛОНАСС – частотный. Несущая частота L-1, мгц – 1602,6 - 1615,5 (ГЛОНАСС) и 1246,4 - 1256,5 (NAVSTAR); L-2, мгц – 1575,4 и 1227,6 соответственно. Система пространственных координат ПЗ-90 (ГЛОНАСС), WGS-84 (МГС-84) (NAVSTAR). Систему определения местоположения делят на три сегмента (подсистемы): А – подсистема орбитального комплекса (созвездие ИСЗ – космический сегмент); Б – наземная подсистема контроля и управления (группа станций слежения, станции загрузки на ИСЗ, главные станции); В – подсистема пользователей – комплекс аппаратно-программных средств, реализующих основное назначение глобальной позиционирующей системы (GPS) – определение координат точек местности для геодезического применения. Приемники GPS делятся на две группы. Первая – поочередное отслеживание спутников, спутники бывают одноканальные и двухканальные (второй канал административный). Вторая группа – многоканальные, измерение расстояния до четырех и более спутников одновременно (4, 6, 8, 10 и 24 канала слежения). Определяются координаты в режиме реального времени, скорость и траектория движения, одновременно обрабатываются сигналы всех спутников рабочего созвездия. Таблица 4' – Типы и группы геодезических спутниковых приемников
По точности спутниковые приемники делятся на три класса: навигационный класс – точность определения координат 150-200 м, класс картографии и ГИС – 1-5 м, геодезический класс – до 1 см (1-3 см в кинематическом режиме, до 1 см при статических измерениях). Все геодезические измерения выполняют с использованием минимум двух приемников. В основном используют следующие методы: статические, кинематические измерения и RTK (кинематика в режиме реального времени). Статические измерения применяются при создании и сгущении геодезических сетей, а также создании съемочного обоснования. Кинематические измерения используют при выполнении топографической съемки. Один из приемников устанавливается на точку с известными координатами; второй приемник может перемещаться от точки к точке, собирая информацию. При этом можно записывать координаты, определяемые при перемещении от одной точки к другой непрерывно в виде траектории или только тех точек, которые необходимо измерять (кинематика «Стой – Иди»). В итоге можно проводить измерения линейных объектов (трубопроводы, коммуникации, дороги), а также точечных объектов. По окончании сбора информации она передается в компьютер, производится ее обработка в специализированном ПО, вычисляются координаты, и выдается оценка их точности. Точность данного метода составляет: - для одночастотного оборудования: 12 мм+2,5 мм/км (в плане); 15 мм+2,5 мм/км (по высоте); - для двухчастотного оборудования: 10 мм+1мм/км (в плане); 20 мм+2 мм/км (по высоте). Современный геодезический GPS-приемник состоит из трех основных элементов: собственно приемник – основное устройство, которое получает информацию от спутников, обрабатывает ее, а также производит запись в память или на внешнее устройство; антенна – принимающий элемент и контроллер – устройство, позволяющее управлять работой приемника. Во многих приборах есть возможность работать без контроллера в режиме статики; но если необходимо выполнять работы в режиме кинематики и RTK, то контроллер необходим. Рис. 71. Схема измерения координат точек земной поверхности спутниковыми приемниками Спутниковые методы создания геодезических сетей делят на геометрические и динамические. В геометрическом методе искусственные спутники Земли (ИСЗ) используют как высокую визирную цель, в динамическом - ИСЗ является носителем координат. В геометрическом методе спутники фотографируют на фоне опорных звезд, что позволяет определить направления со станции слежения на спутники. Фотографирование нескольких положений ИСЗ позволяет получить координаты определяемых пунктов. Эту же задачу в динамическом методе решают путем измерения расстояния до спутников радиотехническими средствами. Создание навигационных систем в России и в США (ГЛОНАСС, GPS) позволяет в любой момент времени в любой части Земли определять координаты точек с высокой точностью. В настоящее время единые системы координат на территории России задаются соответственно государственной геодезической сетью (ГГС) и государственной нивелирной сетью (ГНС). Государственная геодезическая сеть имеет среднюю плотность 1 пункт на 38 кв. км, а государственная нивелирная сеть – 1 репер на 34 кв.км. Завершенная к середине 90-х годов прошлого столетия государственная геодезическая сеть страны (ГГС) построена методами триангуляции и полигонометрии. Она содержит более 464 тыс. геодезических пунктов. Точность этой сети позволяет использовать ее для обоснования топографических съемок до масштаба 1:2000 и крупнее. В результате математической обработки (заключительного уравнивания) в 1996 году получена новая высокоточная система геодезических координат СК-95, распространенная на всю территорию страны. Точность взаимного положения пунктов в этой системе координат составляет: 2-4 см – при расстояниях между пунктами 10-15 км; 10-20 см – при расстояниях 100-200 км; 0,5-0,8 м – при расстояниях около 1000 км. Заключительное уравнивание ГГС завершило этап истории развития геодезии в России, в котором система геодезического обеспечения основывалась на традиционных методах линейно-угловых геодезических измерений. Спутниковые методы по сравнению с традиционными методами обладают рядом преимуществ. В структуре государственной геодезической сети, основанной на использовании современных спутниковых технологий, предусматривается построение геодезических сетей высшего класса точности, связанных между собой по традиционному геодезическому принципу «перехода от общего к частному». Высшим звеном всей структуры должна стать фундаментальная астрономо-геодезическая сеть (ФАГС). Она реализует общеземную геоцентрическую систему координат при решении задачи координатно-временного обеспечения страны, стабильность системы координат во времени, метрологическое обеспечение высокоточных космических средств измерений. Для этого необходимо использовать весь комплекс существующих космических средств измерений (лазерные, радиоинтерферометрические и др.). Следующее звено – высокоточная геодезическая сеть (ВГС). Ее основные функции: распространение на всю территорию страны общеземной геоцентрической системы координат, определение точных параметров взаимного ориентирования общеземной и референцной систем координат, объединение плановой и высотной геодезических основ. Пункты ВГС необходимо привязать к реперам высокоточного нивелирования со средней квадратической ошибкой определения высот не превосходящей 5 см, что позволит получать из спутниковых определений также и высоты. Третьим звеном новой структуры ГГС является спутниковая геодезическая сеть 1 класса (СГС-1). Она должна обеспечить оптимальные условия использования спутниковой аппаратуры, в том числе одночастотных приемников ГЛОНАСС/GPS. Все сети связаны между собой путем последовательного вписывания одной в другую: ФАГС - опорная для ВГС, а ВГС и ФАГС - для СГС-1. Предусматривается привязка к ним и существующей ГГС, которая в новой структуре – лишь низшее звено, исполняющее роль сети сгущения.
Таблица 5 – Характеристика геодезических сетей
Выполнение указанных мероприятий позволит: - повысить точность и оперативность геодезических определений; - внедрить методы спутникового нивелирования вместо геометрического нивелирования 3 и 4 классов; - обеспечить изучение деформаций земной коры, являющихся предвестниками землетрясений и других опасных явлений; - создать систему постоянных наблюдений за динамикой уровней морей на уровенных постах и прогноза их состояния; - обеспечить геодезическое обоснование картографирования страны и создание геоинформационных систем; - установить высокоточную единую геодезическую систему координат и поддерживать ее на уровне современных и перспективных требований экономики, науки и обороны страны. Однако спутниковые технологии не всегда можно использовать при решении ряда геодезических задач, что приводит к необходимости использовать классические методы измерений.
а)
Рис. 72. Основные блоки спутниковой геодезической системы: а)1 –спутниковый приемник (антенна); 2 – контроллер б) двухсистемный геодезический приемник ГЛОНАСС/GPS ГЕО-161 Геодезический приемник ГЛОНАСС/GPS ГЕО-161 используют для измерения расстояний в режимах с постобработкой и геодезических измерений в опорных и съемочных сетях, производственных землеустроительных и геофизических работах, в строительстве и других видах дифференциального и относительного определения положения объектов, в том числе и военного назначения. Основой ГЕО-161 является совмещенный ГЛОНАСС/GPS одночастотный геодезический приемник, имеющий 16 каналов слежения за космическим аппаратом (КА). Конструктивно приемник выполнен в виде моноблока, объединяющего микрополосковую антенну, приемоизмеритель, накопитель данных, панель управления и аккумуляторную батарею. Достоинством такой конструкции является отсутствие кабельных соединений, что удобно для работы в полевых условиях. Внешний вид приемника представлен на рис. 72.
Рис. 73. Варианты установки антенны: а – на штативе с трегером, б – на переносной рейке, в – на стойке быстрого развертывания с рейкой
Приемник имеет сертификаты Госстандарта России и Минобороны России. Благодаря малому энергопотреблению (менее 2,5 Вт) длительность работы приемника без подзарядки аккумулятора достигает 11–12 часов. Емкость внутренней памяти и оригинальный алгоритм сжатия данных обеспечивает регистрацию измерений по всем наблюдаемым космическим аппаратам с дискретностью 1 с в течение 11 часов, а с дискретностью 10 с – пять и более рабочих дней. В стандартном режиме работы приемник позволяет выполнять одновременные измерения по сигналам спутников ГЛОНАСС и GPS, но может быть переключен на работу по любой из систем в отдельности. При помощи ГЕО-161 обеспечивается точность измерений базисов не более 10 мм +2 мм/км (кинематика); при длине линии < 10 км не более 5 мм + 1 мм/км (статика, быстрая статика). Приемник разрабатывался в расчете на реальные условия эксплуатации в России, поэтому одним из основных требований к моноблоку являлась высокая механическая стойкость и работа в широком температурном диапазоне. Использованные в приемнике технические решения, выбранная элементная база и аккумуляторная батарея обеспечивают возможность автономной работы при температуре от – 300С до +550С. Приемник обеспечивает реализацию основных видов съемки, включая динамические режимы, без использования внешнего контроллера, при помощи несложной встроенной панели управления с набором светодиодных индикаторов и псевдосенсорных кнопок. Контроль работы приемника осуществляется при помощи световой и звуковой индикации. При работе без контроллера сценарии работы (шаблоны) заранее формируются на компьютере и загружаются в приемник. В то же время с помощью контроллера, в качестве которого может использоваться карманный персональный компьютер (КПК) с ОС Windows CE, программно реализован ряд дополнительных функций: ввод и редактирование имен точек, ввод высоты антенны приемника, оперативное управление параметрами сбора данных, навигация по заданному маршруту (в том числе с использованием электронных векторных карт) и т. д. Контроллер может использоваться и как внешняя панель управления, так как его кнопки дублируют соответствующие функции встроенной панели приемника. В процессе работы антенну устанавливают либо на трегер на штативе, отцентрированном над определяемой точкой на рейке (рис. 73), или на стойке быстрого развёртывания с рейкой (рис. 73). Это зависит от того, в каком режиме ведут измерения: в статическом, кинематическом или в режиме съёмки с кратковременной остановкой (иду – стою). Е. Кораблев (Российский институт радионавигации и времени, Москва) Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.01 сек.) |