АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Средняя квадратическая, предельная и относительная ошибки

Читайте также:
  1. I. Грубые ошибки.
  2. III. Ошибки, свойственные и устной, и письменной форме речи
  3. Алгоритм обратного распространения ошибки
  4. АПРЕЛЬ (средняя группа)
  5. В глазах Кирюхина была сонливая святая глуповатость, невинность и беспредельная собачья преданность...
  6. Вероятность битовой ошибки (BER)
  7. Видит ошибки других, а о своих даже не задумывается — ведь он хороший человек.
  8. Вопрос: Типичные ошибки, допускаемые в страховом деле.
  9. Двигательные ошибки
  10. ДЕКАБРЬ (средняя группа)
  11. Если, желая двигаться вперед, мы толкаем себя назад, то обречены на ошибки.
  12. Задание 13. Отметьте словосочетания, недопустимые в литературном языке. Определите тип лексической ошибки, допущенной в этих сочетаниях.

Для суждения о степени точности ряда измерений нужно иметь среднее значение ошибки. Среднее арифметическое из измерений нельзя брать, так как из-за разных знаков ряд с отдельными крупными ошибками может оказаться точнее ряда с меньшими ошибками:

25,5; 24,5; 25,0 – mср.=0 Х=25м.

25,04; 24,97; 25,04 – mср.=0,02 м

Если взять ошибки по абсолютной величине, то два ряда измерений с одинаковыми по абсолютной величине средними ошибками могут быть

ошибочно приняты равноточными и наличие крупных ошибок не будет отражено:

Поэтому в качестве критерия для оценки точности ряда измерений используют не зависящую от знаков отдельных ошибок и рельефно показывающую наличие крупных ошибок среднюю квадратическую ошибку. Квадрат этой ошибки принимают равным среднему арифметическому из квадратов отдельных случайных ошибок, то есть:

– формула Гаусса, где Δ – истинная ошибка измерения.

По теории вероятностей подсчитано, что при большом количестве измерений случайная ошибка одного измерения превосходит m.

∆>1m – в 32 случаях из 100 измерений.

∆>2m – в 5 случаях из 100 измерений.

∆>3m – в 3 случаях из 1000 измерений.

Поэтому утроенную среднюю квадратическую ошибку считают предельной

lim=3m.

Часто точность произведенных измерений лучше оценивается относительной ошибкой, то есть отношением абсолютной ошибки к измеряемой величине, выражаемой правильной дробью с числителем, равным 1. Эта ошибка характеризует в основном линейные измерения и измерения площади участков. Например, в замкнутом полигоне теодолитного хода линейные измерения оцениваются относительной ошибкой ; где – абсолютная ошибка, Р – периметр полигона.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)