АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Классификация и свойства ошибок геодезических измерений

Читайте также:
  1. B. группа: веществ с общими токсическими и физико-химическими свойствами.
  2. B. метода разделения смеси веществ, основанный на различных дистрибутивных свойствах различных веществ между двумя фазами — твердой и газовой
  3. I Тип Простейшие. Характеристика. Классификация.
  4. I. ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА ВОДЫ И ВОДЯНОГО ПАРА
  5. II. Классификация медицинских отходов
  6. II. Классификация таза по форме сужения.
  7. Q.3. Магнитные свойства кристаллов.
  8. V. Классификация предметов
  9. XI. ПРИСПОСОБЛЕНИЕ И ДРУГИЕ ЭЛЕМЕНТЫ, СВОЙСТВА. СПОСОБНОСТИ И ДАРОВАНИЯ АРТИСТА
  10. А. Общие химические свойства пиррола, фурана и тиофена
  11. А. ОСНОВНЫЕ СВОЙСТВА КОРРЕКЦИЙ
  12. Аминокислоты винограда и вина. Состав, свойства аминокислот.

Восприятие органами чувств явлений окружающего мира происходит у человека неполно и неточно (расстояние и вес «на глаз»). Поэтому для уточнения и расширения представлений о мире он использует различные инструменты и приборы (определение формы и размеров Земли – космические аппараты, измерение углов – теодолит, расстояний – дальномер и т.д.). Но и такие измерения не идеальны. Поэтому истинное значение измеренных величин, за редким исключением, нам неизвестно, хотя к нему мы все время приближаемся по мере совершенствования приборов и навыков. Определением величины ошибок и их свойств занимается специальная дисциплина «Теория ошибок геодезических измерений».

В практике различают 3 вида ошибок:

а) грубые – получаются в результате грубых просчетов и неисправности приборов (просчет количества лент в длине линии, ошибка в отсчете десятков градусов на лимбе или числа дециметров на рейке). Они могут быть обнаружены и исключены путем повторного измерения величины.

б) систематические – проявляются регулярно, обязательно в каждом измерении и обязательно одинаковы по модулю и знаку, действуют по одному принципу. Они вызваны в основном плохой юстировкой или неисправностью инструментов и приборов (20-ти метровая лента короче на 1см, коллимационная ошибка в теодолите, угол i (величина х) в нивелире и др.). Исключаются из результатов измерений введением поправок и специальной методикой измерений (углы β при КП и КЛ, при нивелировании плечи делают равными, в длины линий вводят поправки за компарирование).

в) случайные – являются следствием несовершенства органов чувств человека и недостаточной точности применяемых инструментов и приборов. Они не могут быть исключены из результатов измерений, но их влияние может быть ослаблено на основе изучения их свойств.

Если Х – истинное значение измеряемой величины, ℓ – измеренное значение, то случайная ошибка ∆ выражается формулой:

∆=ℓ-Х.

Если одна и та же величина измерена несколько раз, то и количество ошибок будет большим. Получается ряд ошибок. Если измерения производятся приборами одинаковой точности, наблюдателями одинаковой квалификации, в одинаковых окружающих условиях, то они называются равноточными. При нарушении указанных условий измерения называются неравноточными.

В основу изучения случайных ошибок положено 4 их свойства, выведенных из изучения рядов ошибок равноточных измерений.

1. При данных условиях измерений случайные ошибки не могут превосходить по абсолютной величине известного предела (свойство ограниченности).

2. Одинаковые по абсолютной величине положительные и отрицательные случайные ошибки равно возможны, одинаково часто встречаются в ряду измерений.

3. Чем больше абсолютная величина случайной ошибки, тем реже такая ошибка встречается в ряду измерений.

4. Среднее арифметическое из случайных ошибок равноточных измерений одной и той же величины имеет тенденцию стремиться к 0 при неограниченном возрастании числа измерений (свойство компенсации). Математически это записывается так

; - знак гауссовой суммы,

при n→ ∞.

Если соблюдены все четыре свойства в ряде ошибок, то говорят о «нормальном распределении».

5. Если

1n – 1-й ряд измерений

1' ∆n' – 2-ой ряд измерений,

то 4-ое свойство распространяется и на сумму попарных произведений, то есть

,

при n→ ∞.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)