АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция
|
Пример 6. Анализ предложенной задачи приводит к выводам, неоднократно обозначенным выше:
Анализ предложенной задачи приводит к выводам, неоднократно обозначенным выше:
- данная конструкция является консольной балкой;
- определение опорных реакций в такой конструкции необязательно;
- построение эпюры моментов следует начинать со свободного конца;
- число характерных участков равно двум (см. стр.10).
3
| Пронумеруем границы характерных участков. Расчет начнем с участка 1-2. Для этого вновь прибегнем к уже ставшему стандартным приему – мысленно установим в сечении, совпадающем с окончанием первого участка, жесткую заделку (рис.35,а). При этом эпюра на участке 1-2 является аналогом третьего частного случая (см. рис.24), ее характер и величина изгибающего момента правее точки 2 известны (рис.35,б).
На следующем стандартном шаге ликвидируем условную заделку правее сечения 2 и переставляем ее в сечение 3 (рис36,а). При этом в сечении 2 восстанавливаются ее кинематические характеристики. Далее рассмотрим участок 2-3. Приложим к нему сосредоточенный момент М=13,5, отложенный выше нейтральной оси в сечении правее т.2 (см. рис.36,б) и растягивающий, таким образом, верхние волокна. Также в сечение 2 переносим «скрытую» поперечную силу R, равную R = q×L= 3×3=9. Кроме того, на участке 2-3 (рис.34,б) в сечении 2 добавляем сосредоточенную силу Р = 7.
- 23 -
Упростим полученную систему нагрузок, действующих на участок 2 – 3, вычислив равнодействующую двух сосредоточенных сил R = 12 – 9= 3 (рис.36,в).
3
| 3
| 3
| 3
|
R=q×L=3×3=9
Исходя из принципа независимости действия сил, вычислим величину изгибающего момента в сечении 3. Независимое действие сосредоточенного момента М=13,5 соответствует частному случаю 2 (рис.21), приводя к растяжению, как было отмечено выше, верхних волокон. Отложим ординату 13,5 выше нейтральной оси (рис.36,г); независимое действие сосредоточенной R=3 приводит к растяжению нижних волокон (по аналогии с частным случаем 1 на рис.18). А величина созданного ею момента в заделке 3 равна P×L= 3×4= 12. Отложим эту ординату ниже нейтральной оси. Алгебраическая сумма воздействий (в данном случае изгибающих моментов) в заделке 3 равна М3=13,5-12=1,5. Этот момент растягивает верхние волокна. В пределах характерного участка 2-3 эпюра изгибающих моментов прямолинейна. Результат проведенного расчета на участке 2-3 – на рис.36,д. На рис. 36,е
изображена полная эпюра моментов для рассмотренного случая загружения консольной балки заданной системой нагрузок.
- 24 – 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Поиск по сайту:
|