АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Физические основы обработки давлением

Читайте также:
  1. Автоматизированные системы обработки информации и управления в сервисе.Клачек.
  2. АКМЕОЛОГО-ПЕДАГОГИЧЕСКИЕ ОСНОВЫ ЛИЧНОСТНОГО И ПРОФЕССИОНАЛЬНОГО РАЗВИТИЯ
  3. Актуальность изучения учебной дисциплины «Основы психологии и педагогики»
  4. Анализ техпроцессов механической обработки заданных деталей с экономическим обоснованием по их усовершенствованию.
  5. Аналоговой обработки сигналов.
  6. Анатомические основы слуха; периферический отдел органа слуха
  7. Ассимиляция теневой основы
  8. Аудит электронной обработки данных. Контрольная среда.
  9. Аудит электронной обработки данных. Контрольная среда.
  10. Б2в1 Основы законодательства по охране материнства и детства. Материнский капитал
  11. Биографические основы
  12. Биографические основы

 

Строение деформируемого металла. Все применяемые в промыш­ленности металлы и сплавы имеют поликристаллическое строение, то-есть состоят из множества произвольно ориентированных в объеме кристаллов. В некоторых случаях кристаллы имеют преобладающую ориентацию, обусловленную технологией производства. Расположе­ние атомов в' кристалле определяется условиями кристаллизации.

Пластическая деформация. Под действием внешних сил расстоя­ние между атомами меняется и при переносе атомов в новые поло­жения устойчивого равновесия изменяется форма заготовки - возникает пластическая деформация. Пластическое деформирование про­исходит за счет двух механизмов: скольжения и двойникования. Скольжение представляет собой параллельное смещение тонких слоев кристалла относительно смежных (рис.1). Обычно плоскостями скольжения являются плоскости наибольшей упаковки атомов. Пере­сечение плоскостей скольжения с поверхностью кристалла называют полосой скольжения.

Скольжение начинается в одном или нескольких участках плоско­сти скольжения и затем распространяется на всю поверхность.

При сдвиге атомов одного слоя относительно другого величина необходимого касательного напряжения равна

 

τmax=(b/a)*(G/2п)

 

где (a, b - расстояние между атомами соответственно в вер­тикальном и горизонтальном направлении, G - модуль сдвига (кГ/мм2) MПa

Из формулы следует, что сопротивление сдвигу на несколько порядков больше действительных значений. Эти расхождения объяс­няются наличием дислокаций.

Дислокации - это искажение кристаллической решетки (рис.2), причинами которых являются: наличие примесей, отсутствие в узлах решетки атомов, излишние атомы, граница зерна между деформиро­ванной и недеформированной частью в плоскости скольжения. Иска­жения в реальных кристаллах ослабляют межатомные связи; это и уменьшает прочность металлов во много раз.

Двойникование - это механизм пластической деформации, приводящий к симметричному изменению ориентировки одной части кристалла относительно другой (рис.3). Иногда плестическая деформация сопровождается при двойниковании увеличением объема (например у Fe на 50%).

 

Пластическая деформация поликристалла. У поликристалла плоскости скольжения в отдельных зернах ориентированы не одинаково. И при приложении внешних сил деформация в зернах будет происходить не одновременно; сначала в зернах с наиболее благоприятной ориенти­ровкой по отношению к действующему напряжению, а затем во всех остальных, когда величина напряжения и для их положения достига­ет максимального значения. В результате скольжения в поликристаллическом теле на поверхности появляются линии скольжения (рис.4) След скольжения ухудшает внешний вид деталей. При дальнейшем увеличении степени деформации вся поверхность тела покрывается линиями скольжения и поэтому их следов нельзя заметить.

Дальнейшее увеличение степени деформации приводит к вытянутости зерна в направлении течения и повороту кристаллографических осей зерен. При некоторой (значительной) деформации разница в направлениях кристаллографических осей уменьшается: возникает преимущественная ориентировка осей поликристалла, которую назы­вают текстурой. Возникновение текстуры ведет к анизотропии всех свойств тела. Анизотропия механических свойств отрицательно ска­зывается на качестве, расходе металла, трудоемкости изготовления изделия.

Влияние холодной пластической деформации на физико-механические свойства. При пластическом деформировании тела с увеличением де­формации:

а) изменяются механические характеристики - увеличивается предел упругости, текучести, прочности, твердость; уменьшается - относительное удлинение (рис. 5), сужение, ударная вязкость,

б) изменяются физические характеристики - увеличивается электрическое сопротивление (у вольфрамовой проволоки на 30-50%), коэрцитивная сила и гистерезис, уменьшается - магнитная проница­емость, магнитная восприимчивость, магнитное насыщение и остаточный магнетизм, уменьшается теплопроводность, сопротивление коррозии.

Упрочнение. Совокупность всех явлений, связанных с изменением механических и физико-химических свойств материалов называется упрочнением (пакленом).

С увеличением деформации сопротивление деформированию увели­чивается по сравнению с начальным в два и более раза (рис. 5).

Степень деформации. Показателем степени деформации в обработке давлением наиболее часто принимается относительная и логарифми­ческая деформация. Наиболее распространено использование относи­тельных деформаций, например, для растяжения:

д=(l-lo)/lo

где lo и l - начальная и конечная длина образца при растяжении.

Деформирование при повышенных температурах. С целью уменьшения деформирующего усилия и повышения пластичности обрабатываемый металл нагревают. При повышении температуры деформируемого ме­талла в нем возникают процессы противоположные упрочнению - воз­врат и рекристаллизация.

При нагреве до температуры (0,25-0,30)К° абсолютной темпе­ратуры плавления металла амплитуда колебания атомов при деформи­ровании настолько увеличивается, что они могут занимать новые положения устойчивого равновесия. Это явление называют в озвратом. Возврат приводит к некоторому уменьшению сопротивления деформиро­ванию, однако не влияет на величину, форму и размеры зерна. По­этому возврат не препятствует образованию текстуры. С увеличени­ем температуры скорость возврата увеличивается, увеличение ско­рости деформирования может уменьшить скорость возврата. Возврат происходит также и 'при нагреве ранее холоднодеформированного металла.

При температуре 0,4К° и более в металле протекает процесс рекристаллизации. Рекристаллизация заключается в появлении заро­дышей, возникновении и росте новых зерен взамен деформированных. Возможность рекристаллизации обусловливается при увеличении тем­пературы повышением энергетического баланса атомов, при котором атомы получают возможность перегруппировок и интенсивного обмена местами. При рекристаллизации получают равноосные зерна; величи­на образовавшихся зерен зависит от температуры, степени деформа­ции и скорости деформации (рис. 6).

Процессу рекристаллизации можно подвергать холоднодеформированные металлы.

Влияние горячей пластической деформации на свойства металла. Заготовки с литой структурой обычно подвергают горячей обработке давлением. Литая структура характеризуется крупными кристаллами первичной кристаллизации, по границам которых располагаются про­слойки, обогащенные примесями и неметаллическими включениями.

Деформирование литой структуры приводит к дроблению кристал­литов и вытягиванию их в направлении наиболее интенсивного тече­ния металла. Одновременно происходит и вытягивание в том же направлении межкристаллитных прослоек, содержащих неметалличес­кие включения. При достаточно большой степени деформации неметал­лические включения принимают форму прядей вытянутых в направле­нии интенсивного течения металла, образуя полосчатость макрост­руктуры (полосчатости микроструктуры при этом нет).

Полосчатость макроструктуры приводит к анизотропии металла. Показатели пластичности (предел текучести и удлинение) вдоль и поперек волокон значительно отличаются, причем разница их значе­ний возрастает с увеличением степени деформации. Прочностные характеристики металла вдоль и поперек волокон отличаются незна­чительно, а увеличение степени деформации на их величине практически не сказывается.

При горячей обработке металлов давлением стремятся вести процесс деформирования таким образом, чтобы волокна макрострук­туры были расположены в направлениях наибольших нормальных напря­жений в условиях работы детали.

Виды деформаций. В зависимости от возможности протекания в метал­ле при деформации процессов упрочнения или разупрочнения разли­чают несколько видов деформации.

Горячая деформация - деформация, при которой происходит пол­ная рекристаллизация деформируемого металла.

Холодная деформация - деформация при которой отсутствуют возврат и рекристаллизация.

Различают и промежуточные виды деформаций: неполная горячая деформация - деформация, при которой рекристаллизация проходит не полностью; неполная холодная деформация - деформация, при ко­торой происходит только возврат.

Основные закономерности пластической деформации

1. Закон постоянства объема: объем металла при его пластиче­ском деформировании остается неизменным.

2. Закон наличия упругой деформации при пластическом деформи­ровании. При любом пластическом деформировании общая деформация складывается из упругой и остаточной

3. Закон остаточных напряжений. При обработке давлением одно­родная пластическая деформация практически не имеет места, хотя при решении она принимается равномерной. Неоднородность деформа­ций обусловлена контактным трением, неравномерным распределением температур, неоднородностью химического состава и механических свойств, формой деформируемого тела и деформирующего инструмента. При неравномерной деформации отдельные зерна деформируются по-разному. Однако благодаря связи между собой они не могут самостоятельно изменять размеры. В результате взаимного влияния воз­никают напряжения со стороны более деформированных участков, ко­торые будут увеличивать деформацию менее деформированных участков и наоборот. Эти напряжения называются дополнительными. Дополни­тельные напряжения бывают трех видов:

напряжения первого рода - напряжения, уравновеши­вающиеся между отдельными частями тела,

напряжения второго рода - напряжения уравновешивающиеся между отдельными зернами,

напряжения третьего рода - напряжения уравновешивающиеся между отдельными элементами зерна.

После снятия деформирующего усилия дополнительные напряжения остаются в металла; в этом случае их называют остаточными, их характеристика аналогична характеристике дополнительных напряже­ний. Остаточные напряжения можно полностью или частично снять при

нагреве металла: при температуре возврата снимают остаточные напряжения первого рода, при температурах выше температуры воз­врата и ниже температуры рекристаллизации снимают остаточные напряжения второго и первого родов* при температуре рекристалли­зации снимают остаточные напряжения третьего, второго и первого родов.

Механическим путем можно уменьшить статочные напряжения 1-го рода за счет равномерного деформирования.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)