|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Электрохимические методы обработкиОснованы на законах электрохимии (См. Электрохимия). По используемым принципам эти методы разделяют на анодные и катодные (см. Электролиз), по технологическим возможностям — на поверхностные и размерные. Поверхностная электрохимическая обработка. Практическое использование электрохимических методов началось с 30-х гг. 19 в. (гальваностегия и гальванопластика, см. Гальванотехника). Первый патент на электролитическое полирование был выдан в 1910 Е. И. Шпитальскому (См. Шпитальский). Суть метода состоит в том, что под действием электрического тока в электролите происходит растворение материала анода (анодное растворение), причём быстрее всего растворяются выступающие части поверхности, что приводит к её выравниванию. При этом материал снимается со всей поверхности, в отличие от механического полирования, где снимаются только наиболее выступающие части. Электролитическое полирование позволяет получить поверхности весьма малой шероховатости. Важное отличие от механического полирования — отсутствие каких-либо изменений в структуре обрабатываемого материала. См. статьи Анодирование, Пассивирование. Размерная электрохимическая обработка. К этим методам обработки относят анодно-гидравлическую и анодно-механическую обработку (См. Анодно-механическая обработка). Анодно-гидравлическая обработка впервые была применена в Советском Союзе в конце 20-х гг. для извлечения из заготовки остатков застрявшего сломанного инструмента. Скорость анодного растворения зависит от расстояния между электродами: чем оно меньше, тем интенсивнее происходит растворение. Поэтому при сближении электродов поверхность анода (заготовка) будет в точности повторять поверхность катода (инструмента). Однако процессу растворения мешают продукты электролиза, скапливающиеся в зоне обработки, и истощение электролита. Удаление продуктов растворения и обновление электролита осуществляются либо механическим способом (анодно-механическая обработка), либо прокачиванием электролита через зону обработки (рис. 9). Этим методом, подбирая электролит, можно обрабатывать практически любые токопроводящие материалы, обеспечивая высокую производительность в сочетании с высоким качеством поверхности. Используемые для анодно-гидравлической обработки электрохимические станки просты в обращении, используют низковольтное (до 24 в) электрооборудование. Однако значительные плотности тока (до 200 а/см 2) требуют мощных источников тока, больших расходов электролита (иногда до 1/3 площади цехов занимают баки для электролита). Комбинированные методы обработки сочетают в себе преимущества электрофизических и электрохимических методов. Используемые сочетания разнообразны. Например, сочетание анодно-механической обработки с ультразвуковой в некоторых случаях повышает производительность в 20 раз. Существующие электроэрозионно-ультразвуковые станки позволяют использовать оба метода как раздельно, так и вместе. Лит.: Вишницкий А. Л., Ясногородский И. 3., Григорчук И. П., Электрохимическая н электромеханическая обработка металлов, Л., 1971; Электрофизические и электрохимические методы размерной обработки материалов, М., 1971; Черепанов Ю. П., Самецкий Б. И., Электрохимическая обработка в машиностроении, М., 1972; Новое в электрофизической и электрохимической обработке материалов, Л., 1972. Д. Л. Юдин. Рис. 1. Классификация основных электрофизических и электрохимических методов обработки. Рис. 2. Схема электроэрозионного метода обработки: 1 — инструмент; 2 — заготовка; 3 — жидкий диэлектрик; 4 — электрические разряды. Рис. 3. Схема обработки пазов ленточным электродом: 1 — лента; 2 — катушки; 3 — копир; 4 — заготовка. Рис. 5. Электроэрозионный станок для извлечения обломков свёрл из глубоких отверстий в коленчатых валах. Рис. 6. Принципиальная схема электроконтактной обработки: 1 — заготовка; 2 — диск; 3 — источник питания. Рис. 7. Схема магнитоимпульсной обработки: 1 - индуктор; 2 - заготовка. Пунктиром показаны магнитные силовые линии; жирными стрелками - механические силы. Рис. 8. Схема устройства для электрогидравлической штамповки: 1 - электроды; 2 - заготовка; 3 - вакуумная полость матрицы; 4 - матрица; 5 - рабочая жидкость. Рис. 9. Схема анодно-гидравлической обработки поверхности турбинной лопатки подвижными электродами: 1 — лопатка; 2 — электроды; 3 — электролит. Стрелками показано направление движения электродов и электролита. Рис 4. Половина ковочного штампа. Рис. 4б. Рабочее колесо газовой турбины, обработанное электроэрозионным методом. [1] Егоров М.Е. Технология машиностроения. Учебник для втузов. Изд. 2-е, доп. М., «Высш. школа», 1976. – с. 28. [2] Махаринский Е.И. Основы технологии машиностроения: Учебник. – Мн: Выш. шк.,1997. – с. 35. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |