АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Физико-физиологические характеристики шума

Читайте также:
  1. V. Расчет и построение скоростной характеристики ТЭД, отнесенной к ободу колеса электровоза.
  2. VI. Расчет и построение электротяговой характеристики ТЭД, отнесенной к ободу колеса электровоза.
  3. VII. Расчет и построение тяговой характеристики электровоза.
  4. Автомобильный транспорт, его основные характеристики и показатели.
  5. Акустические характеристики звукопоглощающих материалов
  6. Акустическое поле и его характеристики
  7. Алюминотермическое восстановление оксидов металлов. Характеристики алюминотермического процесса.
  8. В виде уравнения характеристики крупности.
  9. Важнейшие характеристики уверенного поведения
  10. Варистори та їх основні характеристики.
  11. Вибір параметрів і технічні характеристики бурових вишок
  12. Виды и основные характеристики каналов распределения

Общие сведения о производственном шуме

Интенсификация производственных процессов часто осуществляется за счет увеличения мощностей машин и механизмов, скоростей движения их рабочих органов, повышения скоростей обработки и межоперационной транспортировки обрабатываемых деталей и материалов. Это, в свою очередь, приводит к возрастанию в производственных помещениях шума, который является одним из наиболее распространенных вредных производственных факторов. Шум оказывает физиологическое и психологическое воздействие на организм человека. Под его действием у человека повышается утомляемость, снижается производительность труда, ухудшается разборчивость речи и восприятие звуковых сигналов, нарушаются процессы пищеварения и кровообращения, ослабевает цветовосприятие. Кроме того, может возникнуть заболевание, например, тугоухость и т.д.

Под шумом понимается случайное сочетание звуков различных частот и силы, мешающих восприятию полезных звуков или нарушающих тишину, а также звуки, оказывающие вредное или раздражающее действие на организм человека.

Человеческое ухо воспринимает звуки частотой от 20 до 20000 Гц. При решении практических проблем снижения шума используют более узкий диапазон частот; примерно от 60 до I0000 Гц. Хорошо воспринимаются звуки частотой от 3000 до 5000 Гц (3-5 кГц), эти же звуки производят большое утомляющее действие на человека.

Звуки с частотой ниже 20 Гц называются инфразвуком, с частотой выше 20000 Гц - ультразвуком.

 

Физико-физиологические характеристики шума

Основными физическими параметрами, характеризующими шум в какой-либо точке пространства, с точки зрения охраны труда, является; звуковое давление P, интенсивность звука I, частота f, звуковая мощность W, уровни звукового давления LP, интенсивности LI и мощности L w.

Звуковое давление - это переменная составляющая давления воздуха, возникающая в результате колебания источника звука, накладывающаяся на атмосферное давление и вызывающая его флуктуацию (колебание). Таким образом, звуковое давление определяется как разность между мгновенным значением полного давления и средним давлением, которое наблюдается в среде при отсутствии источниказвука. Единица измерения – Па (н/м2).

 

На слух действует квадрат звукового давления

 

, (1)

где Т0 – время осреднения, Т= 30-100 мс;

Р(t) – мгновенное значение полного звукового давления.

При распространении звуковой волны происходит перенос энергии. Количество звуковой энергии, отнесенное к единице поверхности и проходящей в одну секунду в направлении распространения волн, называется интенсивностью звука.

Интенсивность J и звуковое давление Р связаны между собой соотношением

, (2)

 

где Р - среднеквадратичное значение звукового давления, Па;

r - плотность среды, кг/м3.

с – скорость распространения звука, м/с.

Звуковое давление и интенсивность звука являются характеристиками звукового поля в определенной зоне пространства и не характеризуют непосредственно источник шума. Характеристикой непосредственно источника шума является его звуковая мощность (W). Эта величина характеризует определенное количество энергии, затрачиваемой источником звука в единицу времени на возбуждение звуковой волны. Звуковая мощность источника определяет интенсивность генерируемых волн. Единицей измерения мощности источника звука является Ватт (Вт). В реальных условиях мощность источника звука изменяется в очень широких пределах: от 10-12 до многих миллионов ватт (табл.1). В таких же широких пределах изменяется звуковое давление и интенсивность.

Ухо человека не может определять звуковое давление в абсолютных единицах, но может сравнивать давление различных источников звука. Именно поэтому, а также, учитывая большой диапазон используемого звукового давления для его определения, пользуются относительной логарифмической шкалой.

Применение логарифмической шкалы оказалось возможным и удобным благодаря физиологической особенности нашего слуха – одинаково реагировать на относительно равные изменения интенсивности звука.

Десятичный логарифм отношения двух интенсивностей звука называют уровнем одной из них по отношению к другой L. Единицей измерения уровня является Бел (Б), ей соответствует отношение уравниваемых интенсивностей, равное 10. Если они отличаются в 100, 1000, 10000 paз, то уровни имеют разницу соответственно в 2, 3, 4 Бел - слишком большая величина, поэтому в практических измерениях пользуются десятыми долями бела - децибелами (дБ). Можно измерять в децибелах не только отношения, но и сами величины интенсивностей или звуковых давлений. В соответствии с требованиями международной организации по стандартизации (ИСО) условились за нулевой уровень звука принять интенсивность, равную J = 10-12 Вт/м2. Это нулевой (пороговый) уровень звука.

Тогда интенсивность любого звука или шума можно записать:

а) уровень интенсивности звука,

где Jo - пороговое значение интенсивности, равное 10-12 Вт/м2

б) уровень звукового давления

Пороговое значение звукового давления, равное 2×10-5 являющееся порогом слышимостипри частоте 1000 Гц (установлено международным соглашением).

Уровни интенсивности звука и звуковогодавления связаны следующим образом

,

где rо и со - плотность среды и скорость звука при нормальных атмосферных

условиях;

r и с - плотность среды и скорость звука в воздухе при замерах.

Пороговые значения Jo подобраны так, что при нормальных атмосферных условиях (r = rо и с = со) уровень звукового давления L равен уровню интенсивности L y (L = Lу)

в) уровень звуковой мощности

,

где Р 0- пороговое значение звуковой мощности, равное 10-12 Вт.

Частотный спектр. Зависимость звукового давления или звуковой мощности как физических величин от времени можно представить в виде суммы конечного или бесконечного числа простых синусоидальных колебаний этих величин. Зависимость среднеквадратичных значений этих синусоидальных составляющих (или соответствующих им уровней в децибелах) от частоты называется частотным спектром или просто спектром.

Говоря о спектре, необходимо указывать ширину частотных полос, в которых производится определение спектра. Чаще всего применяются октавные и треть октавные полосы. Октавная полоса (октава) – такая полоса частот, в которой верхняя граничная частота fгр.в в два раза больше нижней fгр.н. В треть октавной полосе соотношение равно 1,26. Полоса частот определяется среднегеометрической частотой

.

 

Характер спектра, следовательно, и производственного шума, может быть низкочастотным, среднечастотным и высокочастотным:

– низкочастотный - спектрс максимумом звукового давления в области частот до 300 Гц;

– среднечастотный - спектр с максимумом звукового давления в области частот 300 – 800 Гц;

– высокочастотный спектр cмаксимумом звукового давления в области частот свыше 800 Гц.

Шумы также подразделяются на:

– широкополосные, с непрерывным спектром шириной более одной октавы (шум подвижного состава, водопада);

– тональные, в спектре которых имеются слышимые дискретные тона (звон, свист, сирена и т.п.). Тональный характер шума устанавливается измерением в треть октавных полосах частот по превышению уровня в одной полосе над соседними не менее чем на 10 дБ.

По временным характеристикам шумы разделяются на постоянные, уровень которых за восьмичасовой рабочий день изменяется во времени не более чем на 5 дБ, и непостоянные уровни которых постоянно меняются более чем на 5 Дб..


1 | 2 | 3 | 4 | 5 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.)