|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Боровская теория атомаЛекция 9. ФИЗИКА АТОМОВ
Закономерности в атомных спектрах. Излучение атомов несет информацию об атомах, то есть может служить инструментом изучения строения атомов. Излучение невзаимодействующих друг с другом атомов (для веществ, находящихся в газообразном состоянии) состоит из отдельных спектральных линий, то есть в излучении присутствуют электромагнитные волны лишь определенных частот. Такой спектр излучения называется линейчатым. Было установлено, что частотное расположение линий атомных спектров не беспорядочно, их можно объединить в группы, или, иначе, серии линий. Для простейшего объекта исследования – атома водорода – было установлено, что частоты наблюдаемых линий в спектре описываются так называемой сериальной формулойБальмера-Ридберга:
где при
при
при
при
При возрастании Вводят физическую величину, определяемую как Очевидно, что в дискретной структуре атомных спектров проявляются квантовые закономерности. Энергия излучаемых квантов составляет
Наибольшая частота соответствует
Классические модели атома
Какими сведениями располагали ученые, впервые попытавшиеся объяснить строение атома в рамках классической теории? К числу таких сведений следует отнести следующие: 1) спектры излучения атомов состоят из ряда монохроматических линий, частоты которых подчинены сериальной формуле Бальмера-Ридберга; 2) при внешних воздействиях (например, при фотоэффекте) может происходить ионизация атомов, т.е. разделение атомов на электроны и положительные ионы; 3) атом электронейтрален и примерно в 2000 раз тяжелее электрона; 4) размеры атома, оцененные на основе молекулярно-кинетической теории, определяются величиной порядка
Одна из первых моделей атома была предложена Дж.Дж.Томсоном в 1903г. Томсон определил атом как «каплю» положительной электрической жидкости, в которой помещены электроны, расположенные таким образом, что вся система в целом оставалась нейтральной. Эта модель объясняла нейтральность атомов и возможность испускания ими электронов. Чтобы объяснить излучение света атомом, Томсон предположил, что электрон в капле может колебаться. Применительно к атому водорода в состоянии равновесия электрон находится в центре положительно заряженной сферы (рис.2). При смещении из центра на него действует возвращающая сила, модуль которой равен Однако модель Томсона не позволяет объяснить сериальный характер излучения. В 1904 г. Х.Нагаока предложил модель атома, согласно которой атом состоит из положительно заряженного ядра, вокруг которого вращается кольцо, содержащее значительное число электронов («атом типа Сатурна»). Модель Нагаоки не привлекла к себе внимание физиков, хотя в определенной мере ее можно считать предшественницей ядерной модели Резерфорда. Э.Резерфорд (1911 г.) зондировал внутренние области атомов при помощи
Для Резерфорд предположил, что для того, чтобы электроны не упали на ядро, они должны вращаться вокруг ядра, тогда сила кулоновского притяжения выполняет роль центростремительной силы. Но в таком случае электроны движутся с ускорением и согласно законам классической электродинамики они должны непрерывно излучать электромагнитные волны. Поскольку процесс излучения приводит к уменьшению энергии электрона, он должен в конечном счете упасть на ядро. Другое противоречие модели Резерфорда заключается в том, что частота излучаемого света должна непрерывно меняться, т.к.
Постулаты Бора. Атом водорода по Бору. Классическая теория не могла объяснить ни устойчивость атома, ни характер атомного спектра. Выход из создавшегося тупика был найден в 1913 г. датским ученым Нильсом Бором, правда, ценой введения ряда предположений (постулатов), противоречащих классическим представлениям. I постулат (постулат о стационарных орбитах). Из множества возможных с точки зрения классической механики электронных орбит в атоме реализуются лишь некоторые дискретные, так называемые стационарные орбиты. На стационарных орбитах момент импульса электрона имеет квантованные (дискретные) значения I постулат позволил Бору сделать атом устойчивым. Исходя из I постулата, можно рассчитать радиусы стационарных орбит. Действительно, исходя из уравнения движения и I постулата Бора, выполнив некоторые преобразования, получим:
откуда
Тогда Исходя из закона сохранения энергии
II постулат (условие частот Бора). Атом излучает (поглощает) энергию только при переходе электрона с одной стационарной орбиты на другую. При этом излучение (поглощение) света происходит в виде квантов света с энергией Существование дискретных энергетических уровней атома было экспериментально подтверждено в 1914 г. Франком и Герцем, наблюдавшими протекание тока в трубке с парами ртути. Когда электроны, испущенные катодом, приобретали под действием внешнего ускоряющего поля энергию, кратную величине 4,9 эВ, ток в цепи резко падал (рис.4). Этот результат объясняется тем, что вследствие дискретности энергетических уровней атомы ртути могут воспринимать энергию только порциями II постулат Бора позволил объяснить спектральные закономерности излучения водородоподобных атомов. Атом водорода по Бору представляет собой систему, состоящую из положительно заряженного ядра, в котором сосредоточена практически вся масса атома, и электрона, вращающегося вокруг ядра по стационарным орбитам ( Согласно II постулату Бора
откуда
Таким образом, мы получили сериальную формулу Бальмера-Ридберга, где Чтобы получить спектр излучения атомов, например, атомов водорода, необходимо привести их в возбужденное состояние, т.е. перевести электрон с уровня Таким образом, модель Бора успешно объяснила закономерности атомных спектров водорода и водородоподобных ионов (т.е. ионов с одним внешним электроном, например, По представлениям теории Бора электрон в атоме водорода движется по стационарной орбите. С этим связан орбитальный механический момент атома
или в векторной форме
Отношение магнитного и механического моментов называется орбитальным гиромагнитным отношением
Это отношение играет большую роль в атомной физике. Мы вернемся к нему при изучении квантовой физики атомов. Из теории Бора
где Теория Бора, отличавшаяся смелостью и простотой, дала ответы на многие вопросы, волновавшие физиков-экспериментаторов того времени, но наряду с этим не позволила решить целый ряд проблем, т.к. обладала существенными недостатками: - теория внутренне противоречива, т.к. в ней классические представления дополнены постулатами, противоречащими классической физике; - теория не объясняет закономерностей многоэлектронных систем: структуры и спектров атомов более сложных, чем атом водорода; - теория Бора не дает полного описания даже атома водорода: давая правильно значения частот спектральных линий, она не позволяет вычислять их интенсивность и конечную ширину; - из теории Бора вытекает, что атомы имеют осевую симметрию, но данные по структуре кристаллов свидетельствуют о том, что форма атомов ближе к сферической.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.015 сек.) |