АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Классификация угроз безопасности, основанная на свойствах информации и систем ее обработки. Угрозы отказа в обслуживании

Читайте также:
  1. B. метода разделения смеси веществ, основанный на различных дистрибутивных свойствах различных веществ между двумя фазами — твердой и газовой
  2. E согласно механизму сотрудничества с системами фермента.
  3. ERP (Enterprise Resource Planning)- системы управления ресурсами предприятия.
  4. FIDELIO V8 - новое поколение систем управления для гостиниц
  5. I Тип Простейшие. Характеристика. Классификация.
  6. II. Богословская система
  7. II. Классификация медицинских отходов
  8. II. Классификация таза по форме сужения.
  9. III. Лексика как система (8 часов)
  10. III. Обеспечение деятельности аккредитованных представителей средств массовой информации
  11. III. СИСТЕМЫ УБЕЖДЕНИЙ И ГЛУБИННЫЕ УБЕЖДЕНИЯ
  12. III. Требования к организации системы обращения с медицинскими отходами
Угрозы можно классифицировать по нескольким критериям:
  • по аспекту информационной безопасности (доступность, целостность, конфиденциальность), против которого угрозы направлены в первую очередь;
  • по компонентам информационных систем, на которые угрозы нацелены (данные, программы, аппаратура, поддерживающая инфраструктура);
  • по способу осуществления (случайные/преднамеренные действия природного/техногенного характера);
  • по расположению источника угроз (внутри/вне рассматриваемой ИС).
В качестве основного критерия мы будем использовать первый (по аспекту ИБ), привлекая при необходимости остальные. Угрозы конфиденциальности направлены на разглашение Секретной информации (несанкционированный доступ).   Угрозы целостности представляют собой любое искажение Или изменение неуполномоченным на это действие лицом хра- нящейся вычислительной системе или передаваемой информа- ции. Наиболее актуальна эта угроза для систем передачи инфор- мации – компьютерных сетей и систем телекоммуникаций.   Угрозы нарушения работоспособности (отказ в обслужива- нии) направлены на создание ситуаций, когда в результате пред- намеренных действий ресурсы вычислительной системы стано- вятся недоступными или снижается ее работоспособность. Цель защиты систем обработки информации – противодей- ствие угрозам безопасности. Наиболее распространенные угрозы доступности Самыми частыми и самыми опасными (с точки зрения размера ущерба) являются непреднамеренные ошибки штатных пользователей, операторов, системных администраторов и других лиц, обслуживающих информационные системы. Иногда такие ошибки и являются собственно угрозами (неправильно введенные данные или ошибка в программе, вызвавшая крах системы), иногда они создают уязвимые места, которыми могут воспользоваться злоумышленники (таковы обычно ошибки администрирования). По некоторым данным, до 65% потерь – следствие непреднамеренных ошибок. Пожары и наводнения не приносят столько бед, сколько безграмотность и небрежность в работе. Очевидно, самый радикальный способ борьбы с непреднамеренными ошибками - максимальная автоматизация и строгий контроль.

 

 

21. Угрозы секретности. Каналы утечки информации.

Утечка информации – несанкционированный процесс переноса информации от источника к злоумышленнику. Утечка информации по техническим каналам имеет ряд особенностей, которые следует учитывать при организации защиты:

Утечка информации может происходить только при попадании её к заинтересованному лицу (злоумышленнику).

При утечке информации происходит её тиражирование, не меняющие характеристики носителя.

Цена информации при утечке уменьшается за счет тиражирования.

Факты утечки информации, как правело, обнаруживается спустя некоторое время, когда меры по обеспечению ее безопасности и локализации последствий могут оказаться неэффективными.

Если информация представляет ценность, то необходимо понять, в каком смысле эту ценность необходимо оберегать. Если ценность информации теряется при ее раскрытии, то говорят, что имеется опасность нарушения секретности информации. Если ценность информации теряется при изменении или уничтожении информации, то говорят, что имеется опасность для целостности информации. Если ценность информации в ее оперативном использовании, то говорят,что имеется опасность нарушения доступности информации. Если ценность информации теряется при сбоях в системе, то говорят, что есть опасность потери устойчивости к ошибкам. Как правило, рассматривают три опасности, которые надо предотвратить путем защиты: секретность, целостность, доступность. Хотя, как показывают примеры действий в боевых условиях, развитие сложных систем Hewlett-Packard, Tandem, практически добавляется четвертое направление: устойчивость к ошибкам.

Под угрозами подразумеваются пути реализации воздействий, которые считаются опасными. Например, угроза съема информации и перехвата излучения с дисплея ведет к потере секретности, угроза пожара ведет к нарушению целостности информации, угроза разрыва канала может реализовать опасность потерять доступность. Угроза сбоя электроэнергии может реализовать опасность неправильной оценки ситуации в системе управления и т.д.

 

Информационные потоки

Структуры информационных потоков являются основой анализа каналов утечки и обеспечения секретности информации. Эти структуры опираются на теорию информации и математическую теорию связи. Рассмотрим простейшие потоки.

1. Пусть субъект S осуществляет доступ на чтение (r) к объекту О. В этом случае говорят об информационном потоке от О к S. Здесь объект О является источником, а S - получателем информации.

2. Пусть субъект S осуществляет доступ на запись (w) к объекту О. В этом случае говорят об информационном потоке от S к О. Здесь объект О является получателем, а S - источником информации.

Из простейших потоков можно построить сложные. Например, информационный поток от субъекта S2 к субъекту S1 по следующей схеме:

r w

S1 ----------à O ß---------- S2 (1)

 

Субъект S2 записывает данные в объект О, а затем S1 считывает их. Здесь S2 - источник, а S1 - получатель информации. Можно говорить о передаче информации, позволяющей реализовать поток. Каналы типа (1), которые используют общие ресурсы памяти, называются каналами по памяти.

С точки зрения защиты информации, каналы и информационные потоки бывают законными или незаконными. Незаконные информационные потоки создают утечку информации и, тем самым, могут нарушать секретность данных.

Рассматривая каналы передачи информационных потоков, можно привлечь теорию информации для вычисления количества информации в потоке и пропускной способности канала. Если незаконный канал нельзя полностью перекрыть, то доля количества информации в объекте, утекающая по этому каналу, служит мерой опасности этого канала. В оценках качества защиты информации американцы используют пороговое значение для допустимой пропускной способности незаконных каналов.

Угрозы секретности

В руководстве по использованию стандарта защиты информации американцы говорят, что существуеттолько два пути нарушения секретности:

утрата контроля над системой защиты;

каналы утечки информации.

Если система обеспечения защиты перестает адекватно функционировать, то, естественно, траектории вычислительного процесса могут пройти через состояние, когда осуществляется запрещенный доступ. Каналы утечки характеризуют ту ситуацию, когда либо проектировщики не смогли предупредить, либо система не в состоянии рассматривать такой доступ как запрещенный. Утрата управления системой защиты может быть реализована оперативными мерами и здесь играют существенную роль административные и кадровые методы защиты. Утрата контроля за защитой может возникнуть в критической ситуации, которая может быть создана стихийно или искусственно. Поэтому одной из главных опасностей для системы защиты является отсутствие устойчивости к ошибкам.

Утрата контроля может возникнуть за счет взламывания защиты самой системы защиты. Противопоставить этому можно только создание защищенного домена для системы защиты.

Разумеется, в реальной жизни используются комбинации этих атак.

Большой спектр возможностей дают каналы утечки. Основной класс каналов утечки в ЭСОД - каналы по памяти (т.е. каналы, которые образуются за счет использования доступа к общим объектам системы). Графически канал по памяти можно изобразить следующим образом:

U2

Пользователь U1 активизирует процесс, который может получить доступ на чтение к общему с пользователем U2 ресурсу О, при этом U2 может писать в О, а U1 может читать от S.

 

22. Классификация изъянов защиты по этапу внедрения.

 

Таблица 3 2 Классификация ИЗ по этапу возникновения

 

     
Этап внедрения ошибки и возникновения ИЗ На стадии разработки Ошибки в требованиях и спецификациях
Ошибки в исходных текстах программ
Ошибки в исполняемом коде
В ходе сопровождения
В ходе эксплуатации

 

23. Аутентификация объекта

 

Под аутентификацией понимается проверка и подтверждение подлинности образа идентифицированного субъекта, объекта, процесса.

Структуру систем идентификации/аутентификации можно проиллюстрировать схемой, приведенной на рис. 5.

При регистрации в системе объекта идентификации/аутентификации монитором безопасности формируется его образ, информация по которому подвергается необратимому без знания алгоритма и шифра-ключа, т.е. криптографическому, преобразованию и сохраняется в виде ресурса, доступного в системе исключительно монитору безопасности. Таким образом, формируется информационный массив внутренних образов объектов идентификации/аутентификации.


Рис.5. Системотехнический аспект идентификации/аутентификации

Впоследствии при идентификации/аутентификации (очередной вход в систему пользователя, запрос процесса на доступ к объекту, проверка подлинности объекта системы при выполнении над ним действий и т. д.) объект через канал переноса информации передает монитору безопасности информацию о своем образе, которая подвергается соответствующему преобразованию. Результат этого преобразования сравнивается с соответствующим зарегистрированным внутренним образом, и при их совпадении принимается решение о распознавании (идентификации) и подлинности (аутентификации) объекта.

Информационный массив внутренних образов объектов идентификации/аутентификации является критическим ресурсом системы, несанкционированный доступ к которому дискредитирует всю систему безопасности. Поэтому помимо всевозможных мер по исключению угроз несанкционированного доступа к нему сама информация о внутренних образах объектов идентификации/аутентификации находится в зашифрованном виде.

Парольные системы основаны на предъявлении пользователем в момент аутентификации специального секретного (известного только подлинному пользователю) слова или набора символов — пароля. Пароль вводится пользователем с клавиатуры, подвергается криптопреобразованию и сравнивается со своей зашифрованной соответствующим образом учетной копией в системе. При совпадении внешнего и внутреннего парольного аутентификатора осуществляется распознавание и подтверждение подлинности соответствующего субъекта.

Парольные системы являются простыми, но при условии правильной организации подбора и использования паролей, в частности, безусловного сохранения пользователями своих паролей в тайне, достаточно надежным средством аутентификации, и, в силу данного обстоятельства, широко распространены.

Основной недостаток систем парольной аутентификации заключается в принципиальной оторванности, отделимости аутентификатора от субъекта-носителя. В результате пароль может быть получен тем или иным способом от законного пользователя или просто подобран, подсмотрен по набору на клавиатуре, перехвачен тем или иным способом в канале ввода в систему и предъявлен системе злоумышленником.

Поэтому в некоторых случаях парольные аутентификаторы могут усиливаться диалогово-вопросными системами или системами «коллективного вхождения». В диалогово-вопросных системах для каждого зарегистрированного пользователя создается некоторая база вопросов и ответов, которые в совокупности и в деталях могут быть известны только подлинному пользователю (например, сведения чисто личного характера). В результате внутренний образ субъекта существенно расширяется и появляется возможность варьирования аутентификатора при каждом следующем входе пользователя в систему.

В системах коллективного вхождения парольную аутентификацию должны одновременно пройти сразу все зарегистрированные для работы в системе пользователи. Иначе говоря, поодиночке пользователи работать в системе не могут. Вероятность подбора, перехвата и т. д. злоумышленником (злоумышленниками) сразу всех паролей, как правило, существенно меньше, и, тем самым, надежность подобных систем аутентификации выше.)


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)