|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
МЕТОДЫ РЕШЕНИЯ АЛГЕБРАИЧЕСКИХ ПРОБЛЕМ СОБСТВЕННЫХ ЗНАЧЕНИЙ
Целый ряд инженерных задач сводится к рассмотрению систем уравнений, имеющих единственное решение лишь в том случае, если известно значение некоторого входящего в них параметра. Этот особый параметр называется характеристическим, или собственным значением системы. С задачами на собственные значения инженер сталкивается в различных ситуациях. Так, для тензоров напряжений собственные значения определяют главные нормальные напряжения, а собственными векторами задаются направления, связанные с этими значениями. При динамическом анализе механических систем собственные значения соответствуют собственным частотам колебаний, а собственные векторы характеризуют моды этих колебаний. При расчете конструкций собственные значения позволяют определять критические нагрузки, превышение которых приводит к потере устойчивости. Первым алгоритмом, решающим задачу собственных значений для симметричной матрицы размером NxN, был алгоритм Якоби, приводящий матрицу к диагональной форме ортогональными преобразованиями. По мере осуществления преобразований исходной матрицы, элементы за пределами главной диагонали уменьшались, а на главной диагонали - увеличивались. Естественным результатом этого процесса является матрица, у которой внедиагональные элементы равны нулю, а на диагонали находятся собственные значения. Выбор наиболее эффективного метода определения собственных значений или собственных векторов для данной инженерной задачи зависит от ряда факторов, таких, как тип уравнений, число искомых собственных значений и их характер. Алгоритмы решения задач на собственные значения делятся на две группы. Итерационные методы очень удобны и хорошо приспособлены для определения наименьшего и наибольшего собственных значений. Методы преобразований подобия несколько сложней, зато позволяют определить все собственные значения и собственные векторы. Различают полную (алгебраическую) проблему собственных значений, предполагающую нахождение всех собственных пар {l, v} матрицы А, и частичную проблему собственных значений, состоящую как правило, в нахождении одного или нескольких собственных чисел l и соответствующих им собственных векторов v. Достаточно часто возникают задачи поиска наибольшего и наименьшего по модулю собственных значений квадратной матрицы - знание таких характеристик матрицы позволяют, например, делать заключения о сходимости итерационных процессов, оптимизировать параметры итерационных методов, учитывать влияние на результаты решения алгебраических задач погрешностей исходных данных. Другой пример: имеется матрица размера 5000*5000, в каждой строке которой содержится порядка десяти отличных от нуля элементов (разреженная матрица), и требуется найти только несколько, может быть, четыре или пять, собственных значений. Нахождение всех собственных пар разреженной матрицы представляет собой достаточно сложную вычислительную проблему.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |