АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Замыкание множества функциональных зависимостей. Аксиомы Армстронга (с доказательством). Расширенный набор правил вывода Дейта (с выводом)

Читайте также:
  1. Exercise 15 Поставте слова в правильному порядку.
  2. Exercise 8 Виберіть правильну відповідь.
  3. I Выбери правильный ответ
  4. I. Общие правила
  5. I. Составьте предложения, поставив слова в правильном порядке.
  6. II. КРИТИКА: основные правила
  7. II. Правила стрельбы
  8. III Проверка правильности настройки ККСВ. Вновь проводится пункт 2 , при этом контролируется своевременность зажигания с/д и отключение контактора.
  9. III. Блок вопросов «Отношение к правильному питанию».
  10. IV. Ответственность за нарушение настоящих Правил
  11. IV. Правила подсчета результатов
  12. IX. ОБЫЧАИ, ПРАВИЛА И ГАДКИЙ УТЕНОК

Замыканием множества FD S является множество FD S+, включающее все FD, логически выводимые из FD множества S. Пример: (CN) -> (CName, CZarplata) => CN->CName и CN->CZarplata

Подход к решению проблемы поиска замыкания S+ множества FD S впервые предложил Вильям Армстронг. Им был предложен набор правил вывода новых FD из существующих (эти правила обычно называют аксиомами Армстронга, хотя справедливость правил доказывается на основе определения FD).

· если B содержится в A, то A –> B (рефлексивность);

· если A–> B, то AC –> BC (пополнение);

· если A –> B и B –> C, то A –> C (транзитивность).

Истинность первой аксиомы Армстронга следует из того, что при B содержится в A FD A->B является тривиальной.

 

Справедливость второй аксиомы докажем от противного. Предположим, что FD AC->BC не соблюдается. Это означает, что в некотором допустимом теле отношения найдутся два кортежа t1 и t2, такие, что t1 {AC} = t2 {AC} (a), но t1 {BC} <> t2 {BC} (b) (здесь t {A} обозначает проекцию кортежа t на множество атрибутов A). По аксиоме рефлексивности из равенства (a) следует, что t1 {A} = t2 {A}. Поскольку имеется FD A->B, должно соблюдаться равенство t1 {B} = t2 {B}. Тогда из неравенства (b) следует, что t1 {C} <> t2 {C}, что противоречит наличию тривиальной FD AC->C. Следовательно, предположение об отсутствии FD ACBC не является верным, и справедливость второй аксиомы доказана.

 

Аналогично докажем истинность третьей аксиомы Армстронга. Предположим, что FD A->C не соблюдается. Это означает, что в некотором допустимом теле отношения найдутся два кортежа t1 и t2, такие, что t1 {A} = t2 {A}, но t1 {C} <> t2 {C}. Но из наличия FD AB следует, что t1 {B} = t2 {B}, а потому из наличия FD B->C следует, что t1 {C} = t2 {C}. Следовательно, предположение об отсутствии FD A->C не является верным, и справедливость третьей аксиомы доказана.

 

Можно доказать, что система правил вывода Армстронга полна и совершенна (sound and complete) в том смысле, что для данного множества FD S любая FD, потенциально выводимая из S, может быть выведена на основе аксиом Армстронга, и применение этих аксиом не может привести к выводу лишней FD. Тем не менее, Дейт по практическим соображениям предложил расширить базовый набор правил вывода еще пятью правилами:

· A –> A (самодетерминированность) – прямо следует из правила (1);

· если A –> BC, то A –> B и A –> C (декомпозиция) – из правила (1) следует, что BC –> B; по правилу (3) A –> B; аналогично, из BC –> С и правила (3) следует A –> C;

· если A –> B и A –> C, то A –> BC (объединение) – из правила (2) следует, что A –> AB и AB –> BC; из правила (3) следует, что A –> BC;

· если A –> B и C –> D, то AC –> BD (композиция) – из правила (2) следует, что AС –> BС и BC –> BD; из правила (3) следует, что AC –> BD;

· если A –> BC и B –> D, то A –> BCD (накопление) – из правила (2) следует, что BС –> BCD; из правила (3) следует, что A –> BCD.

 


 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)