АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Стеклопластики

Читайте также:
  1. Стеклопластики.

Современные армированные пластмассы ведут свое начало от материалов на основе неорганических волокон, нашедших применение в конце войны. Впервые подобные материалы использовали для изготовления антенных обтекателей, которые представляют собой куполообразную конструкцию, где размещается антенна локатора. Обтекатель должен быть прозрачным для радиоволн, поэтому материал для него требуется неэлектропроводный. В качестве основы такого рода материала наибольшим успехом и по сегодняшний день пользуется стекловолокно.

Состав его немного изменился, но в остальном волокна похожи на те, которые вытягивал Гриффитс почти полвека назад. Процесс их вытягивания механизирован, сейчас стекло плавится в нагреваемом электротоком платиновом контейнере, в дне которого имеется обычно 200 или 400 маленьких отверстий. Через каждое из этих отверстий тянется волокно, которое охлаждается и затвердевает по пути к расположенному под контейнером вращающемуся барабану, на который оно наматывается. Обычный диаметр волокон - от 5 до 10 мкм. Их прочность на разрыв сразу после вытягивания составляет, по-видимому, 300-350 кГ/мм^2, но при последующих операциях она снижается. Поскольку свежие волокна имеют тенденцию склеиваться между собой, а за этим следует взаимное разупрочнение, волокна на пути от контейнера к барабану подвергаются специальной обработке, в результате которой на них появляется защитная пленка. Эта пленка предохраняет от повреждений при последующих операциях, например ткани. Перед операцией пропитки смолой эта пленка удаляется - ее растворяют или сжигают.

После того как волокна вытянуты и намотаны на барабан, дальнейший ход событий зависит от назначения будущего изделия. Мы уже говорили, что в форму нужно уложить как можно больше волокон просто потому, что они раз во сто (по крайней мере) прочнее смолы. Поэтому при прочих равных условиях прочность полученного материала будет пропорциональна содержанию волокон. В стекломате, содержащем отдельные волокна, их концентрация очень и очень мала, поэтому стекловолокно в таком виде используется редко, только в специальных случаях. Лучшая упаковка волокон получается в параллельных пучках, например в нитях или пряже. Нити обычно содержат несколько сотен отдельных волокон.

Поскольку волокна непрерывные, нет нужды использовать большую крутку нити, чтобы держать их вместе. Иногда после пропитки смолой такая пряжа используется для изготовления путем намотки - разного рода резервуаров, труб, сосудов давления. Для многих высококачественных изделий из стеклонити делают специальную ткань, которая выглядит как дорогой белый сатин.

Стеклопластики из ткани хороши своей прочностью, но изделия из них довольно дороги. И дело здесь не столько в высокой стоимости самого материала, сколько в том, что стеклоткань не очень удобна для автоматизации процесса получения профильных изделий. Поэтому наибольшая часть производимого стекловолокна применяется в виде мата из рубленой стеклопряжи. Пряжа рубится на куски длиною 5 - 8 см и идет главным образом на получение плоских матов путем нанесения этой волокнистой массы на проволочную сетку, покрытую слабым быстросохнущим клеем. Прижимается мат к сетке с помощью воздушной струи. Когда клей высыхает, мат снимается с сетки, и с ним можно обращаться, как с листом бумаги. Для изготовления фигурных изделий мат разрезается на подходящие куски, которыми обклеивают соответствующую модель, пока не получается деталь нужных размеров и конфигурации.

При изготовлении больших партий профильных изделий используют ту же технику обдувания воздушными струями, поскольку этот процесс можно автоматизировать. Он применяется при изготовлении таких изделии, как шлемы корпуса пишущих машинок и т.д. Вместо металлической сетки здесь используется сетчатая модель, на которую тем же способом наносится стекломат. Полученный стекломат автоматически перемещается в нагретую стальную пресс-форму, здесь к нему добавляется основная связующая смола, которая твердеет под давлением.

Помимо высокой прочности, стекловолокно имеет еще одно достоинство - оно не разбухает в воде, поэтому операцию формовки нет нужды проводить под большим давлением. Значит, можно использовать недорогие, легко изменяемые пресс-формы и отказаться от мощных гидравлических прессов.

При формовке стеклопластиков в качестве связующего можно использовать фенольные смолы, но обычно лучше применять смолы (например, полиэфирные), разработанные специально для этой цели. Многие из производимых смол твердеют не только при очень малых давлениях, но и при комнатной температуре - после добавления катализатора.

Это привело к технологии, которую можно было бы назвать “методом ведра и щетки”. Очень популярный среди любителей и небольших фирм, такой способ почти ничем не отличается от египетского способа получения папье-маше. Слои холоднотвердеющей смолы и стекломата (или стеклоткани) попеременно накладывают на простую гипсовую модель и оставляют в таком виде на время, необходимое для отверждения. Если вся процедура проделана добросовестно и аккуратно, получится вполне нормальная конструкция. Правда, затраты труда будут великоваты, если потребуется сделать десятки таких изделий. Но для изготовления очень больших конструкций, например лодок, - это практически единственный путь.

Одна из трудностей этой технологии заключается в том, что она не позволяет получить двух совершенно одинаковых изделий, так как надлежащий контроль практически невозможен. Ну а поскольку прочность такой переменчивой конструкции предсказать довольно трудно, этот метод не совсем годен для изготовления самолетных конструкций.

Чтобы получить изделие хорошего качества, смола должна твердеть в сухой, теплой, контролируемой атмосфере, а это не всегда возможно в условиях полукустарных мастерских. Именно отсюда возникают жалобы на лодки из стеклопластиков - их зачастую делают в холодных сырых сараях. На хороших заводах эту операцию проделывают в обогреваемом (и дорогом поэтому) помещении, а кустари и любители с наибольшим эффектом могут приложить свои силы к доводке корпусов, изготовленных профессионалами на подходящем оборудовании.

Для больших конструкций вроде судовых корпусов становится важной стоимость модели, так как количество производимых изделий обычно невелико. В таких случаях лучше использовать недорогие модели, а смоле дать возможность медленно твердеть при комнатной температуре. Кроме того, при этом допустима длительная ручная доводка затвердевшей оболочки. Но если мы имеем дело с такими изделиями, как шлемы или чемоданы, экономическая картина меняется. В подобной ситуации обычно применяют состоящую из двух половинок стальную нагретую пресс-форму. Стекловолокнистую заготовку опускают в пресс-форму и перед самым захлопыванием добавляют в нее определенное количество жидкой смолы горячего твердения. Скорость затвердевания подбирается так, чтобы смола, прежде чем затвердеть, успела равномерно пропитать стекломассу. Затем остается лишь извлечь из формы готовое изделие - почти никакой ручной доводки не требуется, так как пресс-форма тщательно отполирована. Весь процесс получения волокнистой заготовки, установки ее в пресс-форму, пропитки смолой и твердения может выполняться в одной большой машине в течение нескольких секунд, в то время как ручная укладка стекловолокна требует часов и даже дней.

В первых армированных материалах количество волокон было небольшим и волокно вводилось с целью нейтрализации грубых дефектов слабой хрупкой матрицы. О таких материалах правильно говорить как об армированных. Однако со временем назначение матрицы изменилось - она стала служить только для склеивания прочных волокон между собой; теперь мы стремимся использовать матрицу лишь в количествах, необходимых для надежного связывания волокон. Такие системы правильнее было бы называть связанными волокнистыми материалами.

Серьезное изучение свойств этих систем - предмет трудный и в высшей степени математизированный. В последнее время он получил признание и даже сделался модным в академических кругах. Не вдаваясь в детали, можно сказать, что свойства массы склеенных между собой волокон более или менее следуют предсказаниям, полученным с помощью элементарного расчета. Обычно трудно получить материал, содержащий более

50% волокон по объему. Прочность готового стекловолокна можно считать равной примерно 200 кГ/мм2, а его модуль Юнга - 7000 кГ/мм2. Пруток стеклопластика (например, спиннинговое удилище), в котором все волокна уложены параллельно оси, будет иметь прочность 100 кГ/мм2, а модуль Юнга 3500 кГ/мм2, поскольку смола почти не вносит своей доли ни в прочность, ни в модуль, хотя, конечно, увеличивает вес. Рассчитанный по простому правилу смесей, удельный вес материала составит 1,85 Г/см3, если в нем не будет пор (а так и должно быть); удельный вес стекла - около 2,5, а смолы - 1,2 Г/см3. Мы можем поэтому составить следующую сравнительную таблицу.

Материал Удельный вес, г/куб.см. Предел прочности, кГ/кв.мм. Удельная прочность Модуль Юнга, кГ/кв.мм. Удельный модуль Юнга
Стеклопластик (параллельные волокна) 1.85        
Стеклопластик (стеклоткань) 1.85        
Мягкая сталь 7.8        
Высокопрочная сталь 7.8        

Из таблицы ясно, что сравнивать сталь и стеклопластик не очень просто. Грубо говоря, стеклопластики прочнее стали, особенно по отношению к удельному весу. Но по жесткости они хуже сталей, даже если принять во внимание намного меньшую плотность. В этом отношении они уступают и дереву,

Как и в случае с древесиной, сравнение в известной степени зависит от того, в скольких направлениях должен быть прочным материал. Конечно, наивысшие цифры дает материал, в котором все волокна и, следовательно, прочность, направлены вдоль одной оси; но технические приложения материалов такого типа сильно ограничены. Когда одинаковое число волокон пересекается под прямым углом, мы имеем материал, напоминающий фанеру: половина прочности однонаправленного материала под углами 0° и 90° и несколько меньшая прочность под углом 45°. Такой материал может быть получен при армировании стеклотканью.

Из теории следует, что если мы хотим иметь действительно одинаковые свойства во всех направлениях волокнистого листового материала, то этого можно достичь несколькими способами укладки волокон. Все эти способы армирования дают треть прочности и жесткости однонаправленных систем. Эксперимент очень хорошо подтверждает теорию. Однако на практике обычно используется стеклопластик с матами из рубленой пряжи. Таким армированием очень редко удается достичь содержания волокон 50% (волокна укладываются некомпактно), поэтому мы должны, пожалуй, рассчитывать на прочность, меньшую чем треть прочности однонаправленного материала. Такого рода стеклопластики обычно Используются для сравнительно недорогих поделок, где большей прочности, возможно, и не требуется. Но даже и они, как правило, превосходят мягкую сталь по удельной (отнесенной к весу) прочности. Вот по жесткости армированные пластики - и в частности, стеклопластики - не могут конкурировать ни с металлами, ни с древесиной. В этом одна из главных трудностей применения стеклопластиков в больших конструкциях - судах, корпусах автомашин и т.д. По той же причине их вычеркивают в настоящее время из списка материалов, пригодных для силовых конструкций самолета. Правда, можно было бы повысить жесткость автомобильного кузова, подкрепив его изнутри стальными трубами, но стоит ли тогда связываться с пластиками?

Металлы - почти, изотропны, то есть их свойства примерно одинаковы во всех направлениях. Эта особенность очень важна для таких деталей, как коленчатый вал, где металлы поэтому незаменимы. Но там, где это свойство не столь существенно (оболочки, панели), лучше применять волокнистые пластики. Получить изотропные свойства в волокнистом материале практически невозможно, потому что очень трудно плотно уложить волокна в трех направлениях сразу. Даже стог сена - слоистая конструкция. Теория показывает, что прочность трехмерной беспорядочной упаковки волокон была бы равна 1/6 от прочности материала с однонаправленными волокнами - вряд ли стоит стремиться получить такой материал.

Несмотря на все свои недостатки, материалы, подобные стеклопластику, постепенно завоевывают все новые и новые позиции. С течением времени по мере того, как мы лучше их узнаем, мы и используем их все шире. Стоимость сырья для пластмасс мало отличается от стоимости стали и алюминия. Однако если вы сравните стоимость обработки этих материалов, то увидите, что затраты на производство сложных изделий из пластмасс настолько меньше соответствующих затрат при использовании металла, что готовое изделие из пластмассы может быть намного дешевле. Но чтобы реализовать эту возможность, обычно нужно заново спроектировать все изделие, а подобные мероприятия часто натыкаются на сопротивление.

Строить из стали корпус большого судна - вполне резонно, по крайней мере если нет спешки и не нужно слишком заботиться о весе. Но сталь становится безнадежно неэффективной для судовых корпусов меньших размеров: толщина листа получается столь малой, что, если даже удастся решить проблемы выпучивания, вмятин и т.д., за несколько месяцев он насквозь проржавеет. В этой области стеклопластики, кажется, утвердились очень прочно, здесь они вполне могут конкурировать по стоимости с металлами.

За последние десятилетия было сделано много усовершенствований в автомобиле. Лично я не отношу к их числу штампованный стальной кузов. Очень уж он тяжел, а ведь вес увеличивает расход бензина и ухудшает характеристики машины. Такой корпус требует также тщательной звуковой защиты. Но, что хуже всего, он начинает ржаветь сразу же, как только вы начинаете ездить на машине, и, по-видимому, коррозия корпуса, а не механический износ приводит рано или поздно большинство автомобилей на склады металлолома.

Вероятно, две причины тормозят применение стеклопластиков для кузовов автомашин. Во-первых, их массовое производство все еще обходится дорого, а, во-вторых, по мнению тех, кто торгует автомобилями, потребителю нравится лоск полированной поверхности, трудно достижимый при использовании стеклопластиков. В то же время в мелкосерийном производстве почти все автомобили имеют стеклопластиковый кузов. В самом деле, - только такое решение позволяет в подобных случаях вести дело экономично, отказавшись как от дорогостоящих штампов, так и от старомодного кузова. Кузов из стеклопластика позволяет примерно вдвое уменьшить вес автомобилей, а это значит, что приемистость машины резко возрастает.

Несмотря на недостатки стеклопластика, мировое производство изделий из него достигло почти миллиона тонн в год и продолжает быстро расти (алюминия и его сплавов производится примерно 4,5 млн. тонн). Но в конце концов оно, наверно, затормозится из-за относительно малой жесткости материала.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.)