АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Концентрация напряжений

Читайте также:
  1. III.Расчет допускаемых напряжений изгиба и контактных напряжений.
  2. а) для подготовки графических материалов (расчетных схем, эпюр усилий, изополей напряжений и т д.)
  3. Выбор материала зубчатой передачи и определение допускаемых напряжений
  4. Выбор материала зубчатых колес и определение допускаемых напряжений.
  5. Выбор материала и определение допускаемых напряжений
  6. Где можно дешево достать компактные преобразователи напряжений
  7. Задание 4. Изучение распределения механических напряжений в балке с помощью поляризованного света
  8. Как сосредоточение, концентрация и медитация соотносятся между собой?
  9. КИ ЭТО КОНЦЕНТРАЦИЯ БАЛАНСА
  10. Концентрация водородных ионов.
  11. Концентрация на том, как сделать что-то, вместо концентрации на том, почему это делается
  12. Концентрация на целом, вместо следующего шага

Каковы бы ни были размеры надрезов-концентраторов, сама концентрация напряжений всегда играет огромную роль. Как показал Инглис, всякое отверстие, любой острый надрез в материале создает в нем местное повышение напряжений. Этот местный всплеск напряжения, величину которого можно рассчитать, зависит только от формы отверстия и никак не связан с его размерами. Все инженеры знают о существовании концентрации напряжений, но далеко не все ее чувствуют. Действительно, полагаясь лишь на здравый смысл, трудно понять, почему крохотное отверстие ослабляет материал в той же степени, что и большая дыра *: это несколько противоречит привычным представлениям. Там, где есть малые отверстия и надрезы, материал начинает разрушаться от усталости очень скоро, но и при обычном статическом разрушении, то есть под действием постоянных нагрузок, такие отверстия и надрезы делают свое дело. Когда стекольщик режет стекло, он не старается прорезать его на всю толщу листа, а делает лишь неглубокий надрез на поверхности, после чего по такой царапине стекло легко разламывается. Ослабляющее действие царапины практически не зависит от ее глубины: мелкая царапина действует ничуть не слабее глубокой, поскольку степень повышения напряжений зависит лишь от остроты ее кромки.

* Как мы увидим дальше, в главах 4 и 8, неупругое поведение пластичных металлов выравнивает напряжения вокруг малого отверстия, значительно ослабляя их концентрацию. Однако это не всегда наблюдается в металлах, работающих при циклическом нагружении, то есть в условиях усталости.

Нетрудно нарисовать физическую картину того, что же в. действительности происходит у таких надрезов, как трещины, особенно если рассматривать существо дела на атомарном уровне. Обратившись к рис. 18, вы поймете, что при растяжении одиночная цепочка атомов испытывает равномерное напряжение, поэтому она обладает теоретической прочностью (рис. 18, а).

Рис. 18. Возникновение концентрации напряжений у кончика трещины.

Взяв еще несколько таких же цепочек и расположив их так, чтобы они образовали кристалл (рис. 18, б), мы увидим, что пока еще ничто не мешает каждой цепочке в отдельности нести ее полное теоретическое напряжение. Предположим далее, что мы перерезали несколько соседних межатомных связей, то есть создали трещину (рис. 18, в). Разумеется, разорванные цепочки уже не смогут, как прежде, нести нагрузку, передавая ее от атома к атому. Теперь эту работу должны взять на себя оставшиеся цепочки. И сила как бы обходит трещину по самому ее краю. Таким образом, почти вся нагрузка, которую несли разрезанные атомные цепочки, падает теперь на единственную атомную связь у самого кончика трещины (рис. 18, г). Ясно, что при подобных обстоятельствах перегруженная связь порвется раньше всех других. Когда же такое перегруженное звено лопнет, положение не изменится к лучшему. Напротив, оно ухудшится, так как на долю соседнего звена добавится не только нагрузка перерезанных с самого начала цепочек (при создании трещин), но еще и та доля нагрузки, которая приходилась на только что лопнувшую цепочку. Таким образом, трещина в кристалле оказывается инструментом, с помощью которого приложенная извне слабая сила рвет поочередно одну за другой прочнейшие межатомные связи. Так трещина и бежит по материалу, пока не разрушит его до конца.

Инглис вычислил коэффициенты концентрации напряжений, показывающие, во сколько раз местное напряжение больше среднего не только для прямоугольных вырезов, но и для вырезов другой формы, например круглых и цилиндрических отверстий. Сильно вытянутое эллиптическое отверстие можно считать трещиной. Для эллиптической трещины коэффициент концентрации напряжений будет выражаться формулой

1+2×(L / R)1/2

где L есть полудлина трещины, a R - радиус кривизны ее кончика. Оказалось, что эта формула справедлива не только для эллипса: у всякого острого надреза коэффициент концентрации напряжений имеет почти такую же величину. Кстати сказать, у круглого отверстия местное напряжение втрое превышает среднее. Рассмотрим трещину длиной, скажем, 2 мкм с радиусом кривизны ее кончика 1 А. Такая трещина слишком мала, чтобы ее удалось увидеть с помощью оптического микроскопа, ее трудно обнаружить даже с помощью электронного микроскопа. Но тем не менее она повышает напряжение у своего кончика в 201 раз. При подобной концентрации напряжений прочность гриффитсова стекла должна снизиться от 1500 кг/мм2 до уровня всего нескольких килограммов на квадратный миллиметр, то есть до величины, близкой к прочности обычного стекла. Все это позволило Гриффитсу предположить, что в обычном стекле содержится множество очень тонких трещин, которые не поддаются обнаружению с помощью каких бы то ни было обычных средств. Он ничего не говорил о том, как они выглядят или каково их происхождение, а просто утверждал, что если они существуют в обычном стекле - а почему бы им не существовать! - то стекло должно быть малопрочным. Он предположил далее, что по какой-то неизвестной причине в тонких волокнах они образуются реже, а в тончайших почти не попадаются, быть может, лишь потому, что им там нет места.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)