АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Растяжение и сжатие в конструкциях

Читайте также:
  1. А-всасывание; б-перемещение (без изменения внутреннего объема); в-сжатие; г-нагнетание (выталкивание) газа.
  2. Вывих, растяжение мышц и сухожилий
  3. Испытания на растяжение
  4. Контроль прочности на сжатие
  5. Проверка нижней обшивки на растяжение при изгибе
  6. Растяжение и мобилизация позвоночника
  7. Сжатие данных
  8. Схема и цикл с дросселированием и сжатием влажного пара.
  9. Такт – сжатие.
  10. УВЛАЖНЕНИЕ Т/ИЗ МАТЕРИАЛОВ В ОГРАЖДАЮЩИХ КОНСТРУКЦИЯХ
  11. Центральное растяжение и сжатие ступенчатого бруса.

В течение многих веков инженеры и архитекторы старались по возможности не нагружать материал растяжением. И это делалось не столько потому, что не было достаточно прочных на разрыв материалов (древесина, например, в этом отношении прекрасный материал), сколько из-за того, что очень трудно сделать достаточно прочное на разрыв соединение. (Большинство из нас интуитивно чувствует, что сжатая конструкция безопаснее растянутой; например, нам кажется, что кирпичная стена безопаснее подвесной канатной дороги.) Но когда все-таки приходилось соединять детали, работающие на растяжение, например на кораблях, места стыков всегда были наиболее уязвимым местом конструкции. Теперь мы научились делать надежные стыки с помощью болтов, заклепок, клея и сварки, и уже нет особых оснований не доверять таким конструкциям.

Однако в древности проблема соединений в сжатых конструкциях решалась намного проще, чем в растянутых. В самом простом случае это была укладка камней или кирпичей один к другому без применения раствора, и такое сооружение не рушилось. Эта работа требует навыка, но он не многим сложнее того, который приобретают дети, складывая картинки из кубиков. Однако с развитием архитектуры росла и высота стен, появилась необходимость надежнее связывать кирпичи и камни между собой. Иначе стены с грохотом превращались в груды камня: не связанные между собой камни расползались под весом верхней части кладки.

До наших дней сохранились великолепные образцы соединений в античных постройках. Правда, не ясно, насколько необходима была та тщательность, с которой выполнены большие каменные блоки этих сооружений. Вероятно, отчасти она определялась соображениями престижа. Но как бы то ни было, многие из древних построек поражают наше воображение.

Однако какой высокой и впечатляющей ни была бы стена, технически это не очень мудреная конструкция; ее создатель должен был думать лишь о напряжениях, действующих в одном направлении, по вертикали. Правда, перекрытия, двери, окна всегда вносят дополнительные трудности. А как только мы начинаем рисовать в своем воображении системы напряжений в двух и трех направлениях, перед нами открываются колоссальные возможности. Примером может служить арка. Самая простая арка (рис. 6) работает на сжатие одновременно в двух направлениях, хотя на первый взгляд это кажется невозможным. Кирпичной аркой можно без особых ухищрений перекрыть пролет длиной около 50 м (чаще встречаются пролеты в 25–50 м). Это намного больше того, чего удается добиться с помощью любого простого балочного перекрытия. Арки очень долговечны, и до наших дней в отличном состоянии сохранилось много древ неримских арок, с их помощью, например, перебрасывали водопроводы через овраги.

Рис. 6. Арка, представляющая собой конструкцию, работающую на сжатие в двух направлениях

Формирование представлений о сложном напряженном состоянии стимулировало громадный скачок в раз витии не только архитектуры, но и техники. Как только была принята концепция двумерной арки, а вслед за этим сделан следующий логический шаг - к трехмерному куполу, - архитектура стала творить чудеса. Центральная часть собора св. Софии, построенного в Константинополе около 530 года при императоре Юстиниане, представляет собой огромный купол, диаметр которого достигает 33 м. Для легкости он сложен из пемзы и покоится на громадных арках, которые в свою очередь опираются на вспомогательные полукупола (рис. 7). Раз меры свободного от каких-либо колонн пространства площадью более чем 60x30 и высотой около 80 м были, вероятно, непревзойденными вплоть до постройки современных вокзалов, крыши которых держатся на металлических стропилах.

Рис. 7. Макет куполов собора св. Софии в Константинополе.

Формы византийских зданий, как правило, просты. Готические же архитекторы, давая волю своему воображению, создавали перекрытия, боковые приделы, витражи. И хоть это, надо думать, обходилось недешево, такие постройки, если они были сделаны со вкусом и знанием дела, могли служить образцами инженерного искусства и художественного мастерства. Что же касается каменной кладки, то она должна быть выполнена так, чтобы напряжения во всех точках конструкции были сжимающими: ведь кладка совсем не сопротивляется растяжению, под действием которого она разваливается по швам.

Готические архитекторы, пытаясь заставить конструкцию работать на сжатие, не прибегали к математике, и поэтому в трехмерные лабиринты соборных крыш чертом прокрадывалось растяжение. Так обрушилась башня одного из самых больших готических соборов - собора в Бове (1247), крыша его проваливалась дважды. Архитекторы знали лишь качественную сторону подобных катастроф и пытались предупредить их, подкрепляя конструкции частоколом контрфорсов (рис. 8).

Рис. 8. Типичная конструкция готического собора с контрфорсами 1 - деревянная крыша; 2 - арочный свод; 3 - контрфорс; 4 - деревянная крыша бокового придела; 5 - стена придела.

В соборе св. Софии эта задача решалась и рациональнее и успешнее: там вспомогательные купола давили на главный купол и создавали сжатие в опасной области. Однако иногда готические зодчие перебарщивали: создавая слишком большие боковые давления, они должны были ставить подпорки изнутри, чтобы предотвратить разрушение крыш. Эти подпорки чаще всего делались в виде перевернутых арок, подобных аркам собора в Уэлсе (Великобритания), который, как бы ни оценивали его в эстетическом плане, технически построен неграмотно (рис. 9). Не удивительно, что крыши церквей довольно часто рушились на головы коленопреклоненных прихожан.

Рис. 9. Собор в Уэльсе (Великобритания).

Каменная кладка остается целой благодаря силам тяжести, то есть при правильно спроектированной кладке вес камня создает безопасную сжимающую нагрузку во всех ее точках. А если этого веса не хватает, к зданию всегда можно добавить бельведеры или башни. Если же в конструкции появляются растянутые области, то, безусловно, растягивающие и сжимающие нагрузки (в том числе нагрузки от веса сооружения) должны быть уравновешены. Так, канаты подвесного моста (рис. 10) находятся в растянутом состоянии, а грунт под мостом оказывается сжатым. Растяжение в брезенте и растяжках палатки уравновешивается сжатием в центральной подпорке и на той земляной площадке, где установлена палатка. На плывущем корабле растяжение в парусах и оснастке вызывает сжатие мачт и рангоутов. В теле животных сжимающие нагрузки воспринимаются скелетом, в основном позвоночником; эти напряжения возникают не только под действием собственного веса, но и вследствие растяжения в мышцах и сухожилиях. Сокращая мышцу, я поднимаю руку, в это время мышца передает сжимающую силу кости, а кость легко выдерживает сжатие. Если нога попадает в условия, когда на нее действует изгиб - а изгиб включает растяжение, - нога может сломаться.

Рис. 10. Растяжение в тросах балансируется сжатием в грунте

Когда мы располагаем материалами, одинаково хорошо работающими и на сжатие и на растяжение, наши конструкции оказываются проще и безопаснее. Именно поэтому в строительстве удобны железобетон и стальные конструкции.
Инженерам повезло, в их распоряжении есть железо и сталь - ведь мы часто и не знаем, какого рода напряжения придется выдержать машине во время работы. Например, стенки парового котла работают на растяжение, но если по какой-то причине давление пара упадет ниже атмосферного, котел будет сжат разностью давлений, однако со стальным котлом ничего страшного не произойдет.

К довольно неожиданным эффектам, с которыми приходится бороться, могут привести сжимающие напряжения в корпусе подводной лодки. Когда лодка находится в надводном положении, она плавает, как любое другое судно, поскольку ее вес меньше веса воды, которая может быть вытеснена объемом лодки. Чтобы лодка погрузилась, балластные цистерны заполняют водой настолько, чтобы вес лодки был равен весу воды в ее объеме. Тогда "удельный вес" лодки будет равен удельному весу воды, и лодка не будет иметь запаса плавучести.

Теперь лодка может опускаться на глубину и маневрировать примерно так же, как это проделывает дирижабль в воздухе. Однако, погружаясь глубже, лодка испытывает все большее и большее давление воды, и сжимающие напряжения в ее корпусе растут. Поскольку давление внутри лодки остается примерно постоянным, корпус ее сжимается, уменьшается объем, а следовательно, уменьшается и выталкивающая сила. Если вес лодки вместе с балластом не изменяется, она стремится провалиться глубже, и при некоторых обстоятельствах этот процесс может стать опасным. На предельной для подводной лодки глубине погружения величина деформации сжатия может составить около 0,7%. Деформация происходит во всех трех направлениях, поэтому объем лодки может уменьшиться примерно на 2%. Так как сжимаемость воды очень невелика, то для лодки весом 1000 т это будет означать потерю выталкивающей силы примерно 20 т *. Если эту силу не компенсировать, частично опорожняя балластные цистерны от воды, подводная лодка будет опускаться все глубже и глубже, пока ее не раздавит давлением воды. В этом, между прочим, заключается одна из трудностей постройки подводной лодки из стеклопластиков, которые всем, пожалуй, хороши, кроме модуля упругости: он слишком мал.

* Общий вес балластной воды, необходимой для погружения такой лодки, будет около 100 т. Следовательно, упругая деформация корпуса потребует заметного изменения балласта.

Иногда думают, что затонувшие подводные лодки "висят" где-то поблизости от океанского дна. Это, конечно, нелепое представление: если корпус потерпевшей аварию лодки и не сомнет давлением воды, что случается чаще всего, то он будет непрерывно сжиматься, выталкивающая сила будет падать и лодка будет опускаться на дно все быстрее и быстрее.

Воздушные шары, пневматические шины и т. п. представляют особый случай конструкции, в которой растягивающие напряжения в оболочке уравновешены давлением наполняющего их газа или жидкости. Поэтому большие баржи-мешки и надувные лодки обычно очень легкие и эффективные конструкции. Изобретение крыш, поддерживаемых изнутри воздухом, заставляет пересмотреть прежние архитектурные традиции, в этих конструкциях все элементы работают на растяжение, лишь воздух внутри здания сжат.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)