АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Обратная задача кинематики

Читайте также:
  1. XV. СВЕРХЗАДАЧА. СКВОЗНОЕ ДЕЙСТВИЕ
  2. Величина, обратная емкости памяти
  3. Вторая задача анализа на чувствительность
  4. Глава III. ЗАДАЧА
  5. Главная задача вакханалии этого этапа — хотя бы частично вывести поедание людей из-под уголовного преследования. Хоть раз, хоть в какой-то исторический момент.
  6. Движение вектора смещения (вторая задача)
  7. Задание 48-2: (Кейс 2 подзадача 1)
  8. Задача .
  9. Задача 1
  10. Задача 1
  11. Задача 1
  12. Задача 1

Задача кинематики бывает прямой и обратной.
В прямой задаче задается закон движения г (t), из

которого требуется получить все кинематические
характеристики движения материальной точки:

Обратная задача гораздо сложнее прямой. Это
связано не только с тем, что при ее решении
необходимо овладеть навыками интегрирования
(интегрировать всегда сложней, чем вычислять
производную), но, в основном, с тем, что заданное
ускорение а зависит, как правило, не только от
времени t, но и от координат и скорости
движущейся частицы. В результате решение
подобной задачи сводится, как правило, к
решению дифференциальных уравнений. В
простейшем случае, когда заданное ускорение а
зависит лишь от времени, решение обратной
задачи выглядит следующим образом. Из (1.4)
dv = adt, следовательно,


Далее из (1.2а) следует, что dr = vdt, поэтому


Результат интегрирования правой части
зависит от конкретного вида зависимости а от t.
В частности, при равноускоренном движении,
когда а = const


Путь, пройденный за время t, находится с
помощью формулы (1.3), записанной в виде

Так как s(t0) = 0, следовательно,











где под интегралом (не следует забывать!)

а затем интегрируют






Интеграл


в принципе вычисляется.


 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)