АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Строение гладкой мышцы

Читайте также:
  1. I. СТРОЕНИЕ ВЕЩЕСТВА
  2. IV. Строение и гистофизиология производных кожи.
  3. АЗОТИСТАЯ КИСЛОТА, СПОСОБЫ ПОЛУЧЕНИЯ, СТРОЕНИЕ.
  4. АЗОТИСТЫЙ АНГИДРИД, СТРОЕНИЕ, ПОЛУЧЕНИЕ, СВОЙСТВА.
  5. АЗОТНЫЙ АНГИДРИД, СВОЙСТВА, СТРОЕНИЕ, СПОСОБЫ ПОЛУЧЕНИЯ.
  6. АММИАК, ЕГО СТРОЕНИЕ, СПОСОБЫ ПОЛУЧЕНИЯ И СВОЙСТВА.
  7. Анализ бизнес-процесса(ов) предприятия и построение моделей
  8. Анализ статистических данных. Построение контрольных листков
  9. Анатомическое строение слизистой оболочки глаза.
  10. АРСЕНИДЫ, ИХ СВОЙСТВА И СТРОЕНИЕ.
  11. Артерии. Морфо-функциональная характеристика. Классификация, развитие, строение, функция артерий. Взаимосвязь структуры артерий и гемодинамических условий. Возрастные изменения.
  12. Баланс. Понятие «бухгалтерский баланс». Назначение и строение.

По структуре гладкая мышца отличается от поперечнополосатой скелетной мышцы и мышцы сердца. Она состоит из клеток веретенообразной формы длиной от 10 до 500 мкм, шириной 5-10 мкм, содержащих одно ядро. Гладкомышечные клетки лежат в виде параллельно ориентированных пучков, расстояние между ними заполнено коллагеновыми и эластическими волокнами, фибробластами, питающими магистралями. Мембраны прилежащих клеток образуют нексусы, которые обеспечивают электрическую связь между клетками и служат для передачи возбуждения с клетки на клетку. Кроме того плазматическая мембрана гладкомышечной клетки имеет особые впячивания - кавеолы, благодаря которым площадь мембраны увеличивается на 70%. Снаружи плазматическая мембрана покрыта базальной мембраной. Комплекс базальной и плазматической мембраны называют сарколеммой. В гладкой мышцы отсутствуют саркомеры. Основу сократительного аппарата составляют миозиновые и актиновые протофибриллы. В ГМК актиновых протофибрилл намного больше, чем в поперечно-полосатом мышечном волокне. Соотношение актин/миозин = 5:1.

Толстые и тонкие миофиламеты распылены по всей саркоплазме гладкого миоцита и не имеют такой стройной организации, как в поперечно-полосатой скелетной мышце. При этом тонкие филаменты прикрепляются к плотным тельцам. Некоторые из этих телец расположены на внутренней поверхности сарколеммы, но большинство из них находятся в саркоплазмме. Плотные тельца состоят из альфа-актинина – белка обнаруженного в структуре Z-мембраны поперечнополосатых мышечных волокон. Некоторые из плотных телец расположенных на внутренней поверхности мембраны соприкасаются с плотными тельцами прилегающей клетки. Тем самым сила, создаваемая одной клеткой может передаваться следующей. Толстые миофиламенты гладкой мышцы содержат миозин, а тонкие – актин, тропомиозин. При этом в составе тонких миофиламентов не обнаружен тропонин.

Гладкие мышцы встречаются в стенках кровеносных сосудах, коже и внутренних органах.

Гладкая мышца играет важную роль в регуляции

Ø просвета воздухоносных путей,

Ø тонуса кровеносных сосудов,

Ø двигательной активности желудочнокишечного тракта,

Ø матки и др.

Классификация гладких мышц:

Ø Мультиунитарные, входят в состав цилиарной мышцы, мышц радужки глаза, мышцы поднимающей волос.

Ø Унитарные (висцеральная), находятся во всех внутренних органах, протоках пищеварительных желез, кровеносных и лимфатических сосудах, коже.

Мультиунитарная гладкая мышца.

Ø состоит из отдельных гладкомышечных клеток, каждая из которых, находится независимо друг от друга;

Ø имеет большую плотность иннервации;

Ø как и поперечнополосатые мышечные волокна, снаружи покрыты веществом, напоминающим базальную мембрану, в состав которого входят, изолирующие клетки друг от друга, коллагеновые и гликопротеиновые волокна;

Ø каждая мышечная клетка может сокращаться отдельно и ее активность регулируется нервными импульсами;

Унитарная гладкая мышца (висцеральная).

Ø представляет собой пласт или пучок, а сарколеммы отдельных миоцитов имеют множественные точки соприкосновения. Это позволяет возбуждению распространяться от одной клетки к другой

Ø мембраны рядом расположенных клеток образуют множественные плотные контакты (gap junctions), через которые ионы имеют возможность свободно передвигаться из одной клетки в другу

Ø потенциал действия, возникающий на мембране гладкомышечной клетки, и ионные потоки могут распространяться по мышечному волокну, обеспечивая возможность одновременного сокращения большого количества отдельных клеток. Данный тип взаимодействия известен как функциональный синцитий

Важной особенность гладкомышечных клеток является их способность к самовозбуждению (автоматии), то есть они способны генерировать потенциал действия без воздействия внешнего раздражителя.

Постоянный мембранный потенциал покоя в гладких мышцах отсутствует, он постоянно дрейфует и в среднем составляет -50мВ. Дрейф происходит спонтанно, без каких-либо влияний и когда мембранный потенциал покоя достигает критического уровня возникает потенциал действия, который и вызывает сокращение мышцы. Продолжительность потенциала действия достигает нескольких секунд, поэтому и сокращение тоже может длиться несколько секунд. Возникшее возбуждение затем распространяется через нексус на соседние участки вызывая их сокращения.

Спонтанная (независимая) активность связана с растяжением гладкомышечных клеток и когда они растягиваются возникает потенциал действия. Частота возникновения потенциалов действия зависит от степени растяжения волокна. Например, перистальтические сокращения кишечника усиливаются при растягивании его стенок химусом.

Унитарные мышцы в основном сокращаются под влиянием нервных импульсов, но иногда возможны и спонтанные сокращения. Одиночный нервный импульс не способен вызывать ответной реакции. Для ее возникновение необходимо суммировать несколько импульсов.

Для всех гладких мышц при генерации возбуждения характерна активация кальциевых каналов, поэтому в гладких мышцах все процессы идут медленнее по сравнению со скелетной.

Скорость проведения возбуждения по нервным волокнам к гладким мышцам составляет 3-5 см в секунду.

Одним из важных раздражителей инициирующих сокращение гладких мышц является их растяжение. Достаточное растяжение гладкой мышцы обычно сопровождается появлением потенциалов действия. Таким образом, появлению потенциалов действия при растяжении гладкой мышцы способствует два фактора:

Ø медленные волновые колебания мембранного потенциала;

Ø деполяризация, вызываемая растяжением гладкой мышцы.

Данное свойство гладкой мышцы позволяет ей автоматически сокращаться при растяжении. Например, во время переполнения тонкого кишечника возникает перистальтическая волна, которая и продвигает содержимое.


1 | 2 | 3 | 4 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)