АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Фазовые состояния углеводородных смесей

Читайте также:
  1. I. Анализ состояния туристской отрасли Республики Бурятия
  2. III. Для углубленной оценки санитарного состояния почвы и способности ее к самоочищению исследуют показатели биологической активности почвы.
  3. III. ПРОМЕЖУТОЧНЫЕ СОСТОЯНИЯ МЕЖДУ ЗДОРОВЬЕМ И БОЛЕЗНЬЮ
  4. V. Категория состояния
  5. XV. ЛИСТ ОСНОВНЫХ ПОКАЗАТЕЛЕЙ СОСТОЯНИЯ БОЛЬНОГО
  6. Акты гражданского состояния.
  7. Анализ качественного состояния основных фондов
  8. Анализ наличия, состояния ОС.
  9. Анализ состава, структуры, технического состояния и движения основных средств
  10. Анализ состояния и эффективности использования основных фондов.
  11. Анализ состояния производства и управления качеством молочной продукции.
  12. Анализ состояния производственной санитарии и гигиены труда на производстве

Значительно сложнее закономерности фазовых переходов двух- и многокомпонентных систем. С появлением в системе двух и более компонентов в закономерностях фазовых изменений возникают особенности, отличающие их от поведения однокомпонентного газа.

В смеси углеводородов каждый компонент имеет собственные значения упругости насыщенных паров, поэтому процессы конденсации и испарения не будут проходить при конкретных значениях давления и температуры, а в определённом диапазоне значений давления и температуры. Границы диапазона будут тем больше, чем больше разница между критическими значениями давления и температуры индивидуальных компонентов, входящих в систему.

Изотермическое сжатие системы будет приводить к конденсации сначала более тяжелого компонента, затем более легкого. В результате изотермы в двухфазной области имеют наклон (рис. 12, а). С появлением в системе второго компонента большие различия появляются и в диаграммах "давление – температура" (рис. 12, б).

Рис. 12. Диаграммы фазового состояния бинарных систем:

а. - зависимость "давление – удельный объём" для смеси н-С5Н12 н-С7Н16; б. – диаграмма "давление-температура" для смеси C2Н6 – н-С7Н16

 

Крайние левая и правая кривые соответствуют давлениям насыщенных паров для легкого (слева) и более тяжелого компонента (справа). Между ними расположены фазовые диаграммы смесей.

Для многокомпонентных систем, в силу их неидеальности, возможны существование двух фаз при температурах или давлениях выше критических величин.

Явления существования двух фаз при изотермическом или изобарическом расширении (сжатии) смеси в области выше критических температур и давлений называются ретроградными явлениями или процессами обратного испарения и конденсации. Изотермические ретроградные явления происходят только при температурах выше критической и ниже максимальной двухфазной температуры. Изобарические процессы испарения и конденсации наблюдаются между критическим и максимальным двухфазным давлением. Такие явления характерны, в основном, для газоконденсатных месторождений, имеющих высокие пластовые температуры и давления.

Рис.13. Различные виды фазовых диаграмм.

1 — кривая точек парообразования; 2 —.кривая точек конденсации.

 

На рис. 13 показаны фазовые диаграммы в координатах Р - Т (давление — температура) с другими условиями возникновения ретроградных явлений, где нанесены лишь кривые точек конден­сации 2 и кривые точек парообразования 1, ограничивающие двух­фазную область.

Здесь в области BCN возникают процессы обратной изотермической конденсации, а в области ACD — процессы обратного изобарического испарения.

Если критическая область характеризуется диаграммой (рис. 13,б), где критическая точка С существует при давлении и температуре ниже максимальных Р' и Т', лежащих на кривой паро­образования, то изотермическое обратное испарение происходит в области CBN, а изобарическое ретроградное испарение - в области ACND.

Обычно критическая точка находится справа от максимального давления, при котором могут одновременно сосуществовать жидкая и газовая фазы, когда в углеводородной смеси массовая концентрация гептана и более тяжелых фракций высокая, а метана низкая.

Ретроградные явления характеризуются диаграммой вида (рис. 13, в ), когда максимальное давление Р' находится на кривой точек конденсации, а критическое давление — между Р' и Т'. Изотермическая ретроградная конденсация возникает тогда по любой вертикальной линии в области BCDN. В области СBN могут проис­ходить явления обратной изобарической конденсации. Такие диа­граммы характерны для жирных и конденсатных газов.

Изотермические ретроградные явле­ния происходят только при температурах выше критических и ниже максимальной двухфазной температуры. Изобарические процессы испарения и конденсации наблюдаются между критическим и макси­мальным двухфазным давлением.

Ретроградные процессы испарения и конденсации сопровождаются непрерывным изменением состава и объемного соотношения жидкой и паровой фаз. Например, по рис. 14 соответствующему фазовой диаграмме, приведенной на рис. 13 б можно проследить течений процессов обратного испарения и конденсации. На рис. 14 нанесены дополнительные кривые, характеризующие количество жидкой фазы в системе при различных давлениях и температурах. При прохожде­нии по изотерме (допустим, AM) от точки конденсации до точки паро­образования можно проследить ретроградный процесс. При давлении, соответствующем точке О. молекулы приблизятся друг к другу доста­точно, чтобы силы притяжения начали действовать между тяжелыми молекулами; образуется жидкая фаза, состоя­щая в основном из тяжелых углеводородов. Этот процесс будет происходить до давления рк, при котором притяжение между легкими молекулами, остав­шимися в газе, до этого слабое станет более эффективным из-за большой бли­зости молекул. С этого момента моле­кулы тяжелых углеводородов начинают вновь втягиваться в паровую фазу. При давлении pк,выделяется максимальное количество жидкой фазы и называется давлением максимальной конденсации.

Рис. 14. фазовая диаграмма вблизи критической точки:

1— кривая точек парообразования; 2— кривая точек конденсации.

 

С дальнейшим ростом давления взаимодействие молекул в жидкости также несколько уменьшается вследствие рас­творения в ней легких углеводородов. Относительная плотность газовой фазы увеличивается, и тяжелые компоненты жидкой фазы начинают все. более и более растворяться в плотной газовой фазе До тех пор, пока не закончится процесс ретроградного испарения. Из сказанного следует, что процесс ретроградного испарения можно упрощенно рассматривать как растворение тяжелых компонентов в плотной паровой фазе подобно тому, как тяжелые фракции нефти растворяются и легком бензине.

Описанные явления обратной конденсации известны в природ­ных условиях — в газовых и газонефтяных месторождениях с высокими пластовыми давлением и температурой. Такие месторождения называются г а з о к о н д е н с а т н ы м и. В состав газов газоконденсатных месторождении в основном входит метан (80—94% по объему). Этан, пропан и бутан содержатся от долей % процента до 4%. На долю пентана и более высококипящих углеводородов в газоконденсатных месторождениях, залегающих на глубине более 1500 м, приходится 1,5—5% (массовая концентрация). Например, на месторождении Зыря (Азербайджан) начальное содержание жидких угле­водородов — конденсата, представляющего собой смесь бензиновых и более тяжелых фракции плотностью 785 кг;м3 и ниже, — соста­вляло 0,28 кг!м3. В составе газов газоконденсатных залежей присутствуют иногда и неуглеводородные газы (N2, С02 и др.).

В газовой шапке газонефтяных месторождений при глубоком залегании пласта может содержаться значительное количество тяжелых компонентов, так как нефть - богатый источник жидких углеводородов, которые при высоком пластовом давлении и темпе­ратуре растворяются в газовой фазе. Лишь иногда, когда в пласте залегает нефть, бедная бензиновыми фракциями, в газовой шапке содержится мало пентана и более высоких углеводородов.

При эксплуатации газоконденсатных месторождений следует обязательно и точно учитывать фазовые превращения, сопровождающие изменение давления и темпе­ратуры смеси. Даже небольшие снижения пластового давления в та­ких месторождениях могут привести к выпадению конденсата из паровой фазы в пласт. Конденсат при этом смочит огромную поверх­ность пористой среды и будет в значительной мере потерян.

Степень насыщения газоконденсатной залежи высококипящими углеводородами (конденсатом) определяется величиной газоконденсатного фактора. По аналогии с газовым фактором (Го) для нефтяных месторождений понятие газоконденсатный фактор (Ко) применяется для конденсатных залежей. Газоконденсатный фактор - представляет собой отношение количества (дебита) газа в м3 к количеству стабильного конденсата в м3. Величина, обратная газоконденсатному фактору, называется выход конденсата.

Нефть и конденсат полученные, непосредственно, на промысле при данных температурах и давлениях, называются сырыми. Нефть и конденсат, прошедшие процессы дегазации (сепарации), стабилизации при стандартных условиях называются стабильными.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)