|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Правила определения средних величинВажнейшими условиями (принципами) для правильного вычисления и использования средних величин является следующие: 1. В каждом конкретном случае необходимо исходить из качественного содержания осредняемого признака, учитывать взаимосвязь изучаемых признаков и имеющиеся для расчета данные. 2. Индивидуальные значения, из которых вычисляются средние, должны относиться к однородной совокупности, а число их должно быть значительным.
Степенные средние в зависимости от представления исходных данных могут быть простыми и взвешенными. Если вариант значения признака встречается один раз, расчеты проводим по средней простой (например зарплата в 3 тыс.руб. встречается только у одного рабочего), а если вариант повторяется неодинаковое число раз, то есть имеет разные частоты (например, зарплата в 4 тыс.рублей встречается у пяти работников), то расчет проводим по средней взвешенной. При расчете различных степенных средних по одним и тем же данным значения средних будут неодинаковыми. Чем выше показатель степени (), тем больше величина средней, т.е. действует правило мажорантности средних: Вопрос о выборе средней решается в каждом отдельном случае, исходя из задачи исследования, материального содержания изучаемого явления и наличия исходной информации. Он состоит из нескольких этапов: 1) устанавливается определяющий показатель, т. е. обобщающий показатель совокупности, от которого зависит величина средней; 2) определяется математическое выражение для определяющего показателя; З) производится замена индивидуальных значений средними вел и ч и н а м и; 4) решение уравнения средней. Основополагающее правило при этом заключается в том, что величины, представляющие собой числитель и знаменатель средней, должны иметь определенный логический смысл. Средняя арифметическая и средняя гармоническая наиболее распространенные виды средней, получившие широкое применение в плановых расчетах, при расчете общей средней из средних групповых, а также при выявлении взаимосвязи между признаками с помощью группировок. Выбор средней арифметической и средней гармонической определяется характером имеющейся в распоряжении исследователя информации. Средняя квадратическая применяется для расчета среднего квадратического отклонения (а), являющегося показателем вариации признаков. Средняя геометрическая (простая) используется при вычислении среднего коэффициента роста (темпа) в рядах динамики, если промежутки времени, к которым относятся коэффициенты роста, одинаковы. Если средние коэффициенты роста относятся к периодам различной продолжительности, то общий средний коэффициент роста за весь период определяется по формуле средней геометрической взвешенной (f,- продолжительностьпериода, к которому относится средний коэффициент роста). Структурные средние - мода и медиана - в отличие от степенных средних, которые в значительной степени являются абстрактной характеристикой совокупности, выступают как конкретные величины, совпадающие с вполне определенными вариантами совокупности. Это делает их незаменимыми при решении ряда практических задач.
Простые средние Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |