АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Преобразование Лапласа

Читайте также:
  1. Дальнейшее развитие курортов, его преобразование и застройка регламентируются рядом законодательных и нормативных документов.
  2. Критерий Лапласа.
  3. Медитация: преобразование печали в сострадание.
  4. Преобразование графиков функций
  5. Преобразование НАТО
  6. Преобразование сообщений
  7. Преобразование типа указателя
  8. Преобразование энергии.

Дискретное преобразование Лапласа (ДПЛ), как и ДПФ, может быть получено из интегрального преобразования дискретизаций аргументов (tk = kDt, wn = nDw):

Y(p) = y(t) exp(-pt) dt, Y(pn) = Dt y(tk) exp(-pntk), (6.2.1)

где p = s+jw - комплексная частота, s ³ 0.

y(t) = (1/2pj) Y(p) exp(pt) dp. y(tk) = Dt Y(pn) exp(pntk). (6.2.2)

Функцию Y(p) называют изображением Лапласа функции y(t) - оригинала изображения. Нетрудно заметить, что при s = 0 преобразование Лапласа превращается в одностороннее преобразование Фурье, а для каузальных сигналов - в полную аналогию ПФ. Наиболее существенной особенностью преобразования Лапласа является возможность его применения для спектрального анализа функций, не имеющих фурье-образов из-за расходимости интегралов Фурье. Для понимания последнего запишем интеграл Лапласа в развернутой форме:

Y(p) = y(t) exp(-st-jwt) dt = y(t) exp(-st) exp(-jwt) dt = y'(t) exp(-jwt) dt.

Правый интеграл для каузальных сигналов представляет собой преобразование Фурье, при этом сам сигнал y'(t) за счет экспоненциального множителя exp(-st) соответствующим выбором значения s>0 превращается в затухающий, конечный по энергии, что и требуется для существования его фурье-образа. Все свойства и теоремы преобразований Фурье имеют соответствующие аналоги и для преобразований Лапласа.

Пример сопоставления преобразований Фурье и Лапласа приведен на рис. 6.2.1.

Рис. 6.2.1. Сопоставление преобразований Фурье и Лапласа.

6.3. Z - преобразование сигналов [2,13,21].

Определение преобразования. Распространенным способом анализа дискретных цифровых последовательностей является z-преобразование (z-transform). Оно играет для дискретных сигналов и систем такую же роль, как для аналоговых – преобразование Лапласа.

Произвольной непрерывной функции s(t), равномерно дискретизированной и отображенной отсчетами sk = s(kDt), равно как и непосредственно дискретной функции, можно поставить в соответствие степенной полином по z, последовательными коэффициентами которого являются значения sk:

sk = s(kDt) Û TZ[s(kDt)] = sk zk = S(z). (6.3.1)

где z = s+jv = r×exp(-jj) - произвольная комплексная переменная. Полином S(z) называют z-образом или z-изображением функции s(kDt). Преобразование имеет смысл для области тех значений z, в которой ряд S(z) сходится, т.е. сумма ряда представляет собой аналитическую функцию переменной z, не имеющую полюсов и особых точек.

Пример: sk = {1, 2, 0, -1, -2, -1, 0, 0}.

S(z) = 1z0+2z1+0z2-1z3-2z4-1z5+0z6+0z7 = 1+2z-z3-2z4-z5.

Впервые z-преобразование введено в употребление П.Лапласом в 1779 и повторно "открыто" В.Гуревичем в 1947 году с изменением символики на z-1. В настоящее время в технической литературе имеют место оба вида символики. На практическое использование преобразования это не влияет, т.к. смена знака только зеркально изменяет нумерацию членов полинома (относительно z0), числовое пространство которых в общем случае от -¥ до +¥. В дальнейшем в качестве основной будем использовать символику положительных степеней z, давая пояснения по особенностям отрицательной символики, если таковая имеется.

По заданному или полученному в результате анализа какой-либо системы z-полиному однозначно восстанавливается соответствующая этому полиному функция путем идентификации коэффициентов степеней при zk с k-отсчетами функции.

Пример: S(z) = 1+3z2+8z3-4z6-2z7 = 1z0+0z1+3z2+8z3+0z4+0z5-0z6-2z7.

sk = {1, 0, 3, 8, 0, 0, -4, -2}.

Смысл величины z в z-полиноме заключается в том, что она является оператором единичной задержки по координатам функции. Умножение z-образа сигнала s(k) на величину zn означает задержку сигнала на n интервалов: znS(z) Û s(k-n).

Z-образы с положительными степенями z соответствуют каузальным (физически реализуемым) процессам и системам, которые работают в реальном масштабе времени с текущими и "прошлыми" значениями сигналов. При обработке информации на ЭВМ каузальность сигналов не относится к числу ограничений и возможно использование отрицательных степеней z, соответствующих отсчетам сигналов "вперед". Последнее применяется, например, при синтезе симметричных операторов фильтров, что позволяет производить обработку информации без внесения в сигнал фазовых искажений. При использовании символики z-1 "прошлым" значениям соответствуют значения с отрицательными степенями z, "будущим – с положительными.

Основное достоинство z-преобразований заключается в простоте математических операций со степенными полиномами, что имеет немаловажное значение при расчетах цифровых фильтров и спектральном анализе.

Примеры z-преобразования часто встречающихся на практике дискретных сигналов.

Импульсы Кронекера. В общем случае, в произвольной точке числовой оси:

d(k-n) =1 при k=n, d(k-n) = 0 при k ≠ n.

Xd(z) = d(k-n) zk = zn.

Для импульса Кронекера в нулевой точке соответственно Xd(z) = z0 =1.

Функция Хевисайда (единичный скачок).

x(k) = 0 при k < 0, x(k) = 1 при k ³ 0.

X(z) = zk = zk.

Ряд сходится при |z| < 1, при этом его сумма равна:

X(z) = 1/(1-z), |z| < 1.

При использовании символики z-1:

X(z) = 1/(1-z-1) = z/(z-1), |z| > 1.

Экспоненциальная функция:

x(k) = 0 при k < 0, x(k) = ak при k ³ 0.

X(z) = x(k) zk = ak zk = (az)k.

Как и в предыдущем случае, ряд сходится при |az| > 1, т.е. при |z| < |a|, при этом:

X(z) = 1/(1-az), |z| > |a|.

Связь с преобразованиями Фурье и Лапласа. Запишем дискретный сигнал sk в виде суммы весовых импульсов Кронекера:

sk = s(kDt) = s(nDt) d(kDt-nDt).

Определим спектр сигнала по теореме запаздывания:

S(w) = s(kDt) exp(-jwkDt).

Выполним замену переменных, z = exp(-jwDt), и получим:

S(w) = s(kDt)×zk = S(z).

Отсюда следует, что дискретное преобразование Фурье является частным случаем z-преобразования при z = exp(-jwDt). Аналогичной подстановкой z = exp(-p) может осуществляться переход к дискретному преобразованию Лапласа. В общем виде:

S(w) = S(z), z = exp(-jwDt); S(p) = S(z), z = exp(-pDt). (6.3.2)

Обратное преобразование:

S(z) = S(w), w = ln z/jDt; S(z) = S(p), p = ln z/Dt. (6.3.3)

При отрицательной символике z связь между представлениями осуществляется соответственно подстановками z-1 = exp(jwDt) и z-1 = exp(p).

Свойства z-преобразования. Без углубления в теорию, можно констатировать, что все свойства ДПФ действительны и для z-преобразования. Отметим некоторые из них.

Линейность: Если S(k) = a·x(k)+b·y(k), то S(z) = aX(z)+bY(z). Соответственно, z-преобразование допустимо только для анализа линейных систем и сигналов, удовлетворяющих принципу суперпозиции.

Задержка на n тактов: y(k) = x(k-n).

Y(z) = y(k)×zk = x(k-n)×zk =zn x(k-n)×zk-n = zn x(m)×zm = zn X(z).

Соответственно, умножение z-образа сигнала на множитель zn вызывает сдвиг сигнала на n тактов дискретизации.

Для z-преобразования действительны все известные теоремы о спектрах. В частности, свертка двух сигналов отображается в z-области произведением их z-образов, и наоборот:

s(k) * h(k) Û S(z)H(z), s(k)·h(k) Û S(z) * H(z).

При z = exp(-jwDt) z-преобразование представляет собой особую форму представления дискретных сигналов, при которой на полином S(z) можно ссылаться как на временную функцию (по значениям коэффициентов kDt), так и на функцию частотного спектра сигнала (по значениям аргумента w).

Рис. 6.3.1. Комплексная z-плоскость

Отображение z-преобразования выполняют на комплексной z-плоскости с Re z и Im z по осям координат (рис. 6.3.1). Спектральной оси частот w на z-плоскости соответствует окружность радиуса:

|z| = |exp(-jwDt)| = = 1.

Подстановка значения какой-либо частоты w в z = exp(-jwDt) отображается точкой на окружности. Частоте w = 0 соответствует точка Re z = 1 и Im z = 0 на правой стороне оси абсцисс. При повышении частоты точка смещается по окружности против часовой стрелки, и занимает крайнее левое положение на частоте Найквиста wN = p/Dt (Re z = -1, Im z = 0). Отрицательные частоты спектра отображаются аналогично по часовой стрелке на нижней полуокружности. Точки wN совпадают, а при дальнейшем повышении или понижении частоты значения начинают повторяться в полном соответствии с периодичностью спектра дискретной функции. Проход по полной окружности соответствует одному периоду спектра, а любая гармоника спектра сигнала задается на плоскости двумя точками, симметричными относительно оси абсцисс.

Z-преобразование позволяет производить разложение сигналов и функций, например передаточных функций фильтров, на короткие составляющие операции свертки, для чего достаточно приравнять z-полином к нулю, найти его корни ai, и переписать полином в виде произведения двучленов:

S(z) = a0(z-a1)(z-a2)...,

где а0- последний отсчет сигнала (коэффициент при старшей степени z).

Но произведению в z-области соответствует свертка в координатной области, и при обратном преобразовании двучлены (z-ai) превращаются в двухточечные диполи {-ai,1}, а сигнал длиной N представляется сверткой (N-1) диполей:

sk= a0{-a1,1}*{-a2,1}*{-a3,1}*...

Пример. sk = {1.4464, -2.32, 3.37, -3, 1}. S(z) = z4-3z3+3.37z2-2.32z+1.4464. a0 = 1.

Корни полинома S(z): a1 = 0.8+0.8j, a2 = 0.8-0.8j, a3 = 0.7+0.8j, a4 = 0.7-0.8j,

S(z) = (z-0.8-0.8j)(z-0.8+0.8j)(z-0.7-0.8j)(z-0.7+0.8j).

Корни полинома представлены на z-плоскости на рис. 6.3.1. Корни полинома комплексные и четыре двучлена в координатной области также будут комплексными. Но они являются сопряженными, и для получения вещественных функций следует перемножить сопряженные двучлены и получить биквадратные блоки: S(z) = (z2-1.4z+1.13)(z2-1.6z+1.28).

При переходе в координатную область: sk = {1.13, -1.4, 1} * {1.28, -1.6, 1}.

Таким образом, исходный сигнал разложен на свертку двух трехчленных сигналов (функций).

Аналитическая форма z-образов существует для z-преобразований, если возможно свертывание степенного ряда в аналитическое выражение. Выше, в примерах z-преобразования, уже приводилось приведение к аналитической форме z-образов функции Хевисайда и экспоненциальной функции.

Обратное z-преобразование в общем случае производится интегрированием по произвольному замкнутому контуру C, расположенному в области сходимости и окружающему все особые точки (нули и полюсы) z-образа:

sk = (1/2pj)

Способом, удобным для практического применения, является разложение рациональных S(z) на простые дроби. С учетом линейности преобразования:

S(z) = an/(1-bnz) Û an(bn)k = sk.

Пример. S(z) = 1/(1-5z+6z2) = 3/(1-3z)-3/(1-2z) Û 3×3k -3×2k = s(k).

При разложении функции S(z) по степеням z обратное z-преобразование не вызывает затруднений.

6.4. Дискретная свертка (конволюция) [5,17,21].

Уравнение дискретной свертки двух функций (сигналов) может быть получено непосредственно из интегрального уравнения свертки при замене интегрирования суммированием мгновенных значений функций с шагом Dt:

y(kDt) = Dt s(nDt) h(kDt-nDt) = Dt h(nDt) s(kDt-nDt). (6.4.1)

При выполнении дискретной свертки мы имеем дело с цифровыми массивами, при этом шаг дискретизации для массивов по физическому аргументу свертки должен быть равным и принимается за 1, а в качестве аргумента используется нумерация отсчетов в массивах:

y(k) = h(n)s (k-n) º hnsk-n º yk. (6.4.1')

y(k) = h(n) * s(k-n) º s(k) * h(n) º sk * hn.

Техника свертки приведена на рис. 6.4.1. Для вычисления свертки массив одной из функций (sk- входного сигнала) располагается по ходу возрастания номеров. Массив второй функции (hn - более короткой, оператор свертки), строится параллельно первому массиву в обратном порядке (по ходу уменьшения номеров, в режиме обратного времени). Для вычисления yk значение h0 располагается против sk, все значения sk-n перемножаются с расположенными против них значениями hn и суммируются. Результаты суммирования являются выходным значением функции yk, после чего оператор hn сдвигается на один номер k вперед (или функция sk сдвигается ему навстречу) и вычисление повторяется для номера k+1 и т.д.

Рис. 6.4.1. Техника дискретной свертки.

В начальный момент свертки при вычислении значений yk оператор hn, построенный в режиме обратного времени, "зависает" для значений k-n при n>k против отсутствующих отсчетов входной функции. "Зависание" исключают либо заданием начальных условий - дополнительных отсчетов, чаще всего нулевых или равных первому отсчету входной функции, либо началом свертки с отсчета входной функции k = n с соответствующим сокращением интервала выходной функции. Для операторов со значениями -n (вперед по времени) такой же момент может наступать и в конце входного массива.

Пример. Уравнение свертки: yk = bn xk-n = bo xk + b1 xk-1 + b2 xk-2. Значения оператора bn:

bo = 5, b1 = 3, b2 = 2. Входной сигнал: xk = {0,1,0,0,0}, начальные условия: x-n = 0.

Расчет выходного сигнала:

yo = 5xo + 3x-1+ 2x-2 = 5 · 0 + 3 · 0 + 2 · 0 = 0, y1 = 5x1 + 3xo + 2x-1 = 5 · 1 + 3 · 0 + 2 · 0 = 5,

y2 = 5x2 + 3x1 + 2xo = 5 · 0 + 3 · 1 + 2 · 0 = 3, y3 = 5x3 + 3x2 + 2x1 = 5 · 0 + 3 · 0 + 2 · 1 = 2,

y4 = 5x4 + 3x3 + 2x2 = 5 · 0 + 3 · 0 + 2 · 0 = 0, y5 = 5x5 + 3x4 + 2x3 = 5 · 0 + 3 · 0 + 2 · 0 = 0

Выходной сигнал: yk = {0, 5, 3, 2, 0}

Заметим: свертка функции оператора с единичным входным сигналом представляет собой повторение функции оператора свертки на выходе.

На рис. 6.4.2 приведен пример выполнения дискретной свертки каузальным (односторонним) и четным (симметричным, двусторонним) оператором одного и того же сигнала.

Рис. 6.4.2. Примеры выполнения дискретной свертки.

Для дискретной свертки действительны все свойства и теоремы интегральной свертки. В частности, свертка функций в координатной области отображается произведением их спектров в частотной области, что позволяет использовать ДПФ для вычисления свертки при большой длине функций по следующей схеме:

s(k) Û S(w), h(n) Û H(w), Y(w) = S(w)×H(w), Y(w) Û y(k).

Выполнение произведения спектров может производиться только при одинаковой их длине, и оператор h перед ДПФ обычно дополняется нулями до размера функции s(k).

Второй фактор, который следует принимать во внимание, это цикличность свертки при ее выполнении в спектральной области, обусловленная периодизацией дискретных функций. Перемножаемые спектры являются спектрами периодических функций, и результат на концевых интервалах может не совпадать с дискретной линейной сверткой, где условия продления интервалов (начальные условия) задаются, а не повторяют главный период.

Рис. 6.4.3. Результаты двух видов свертки.

На рис. 6.4.3 приведены результаты свертки сигнала sk, заданного на интервале k=(0-50), с функцией hn = a×exp(-a×n), a = 0.1. Свертка, выполненная через ДПФ, в левой части интервала резко отличается от линейной свертки. Характер искажения становится понятным, если дополнить главный интервал с левой стороны его периодическим продолжением (на рисунке показана часть левого бокового периода, свертка с которым заходит в главный период). Для операторов hn со значениями n, вперед по положению, аналогичные искажения появятся и в правой части главного периода. Для устранения таких искажений функции должны продлеваться нулями на размер оператора h, что исключит наложение боковых периодов главной трассы функции.

При выполнении свертки через БПФ ощутимое повышение скорости вычислений появляется только при большой длине функций и операторов (например, M>1000, N>100). Следует также обращать внимание на разрядность результатов, т.к. перемножение чисел дает увеличение разрядности в 2 раза. При ограниченной разрядности числового представления с соответствующим округлением это может приводить к погрешностям суммирования.

литература

2. Бендат Дж., Пирсол А. Прикладной анализ случайных данных. – М.: Мир, 1989. – 540 с.

5. Гольденберг Л.М. и др. Цифровая обработка сигналов: Учебное пособие для вузов. - М.: Радио и связь, 1990.- 256 с.

13. Канасевич Э.Р. Анализ временных последовательностей в геофизике. - М.: Недра, 1985.- 300 с.

17. Никитин А.А. Теоретические основы обработки геофизической информации: Учебник для вузов. - М.: Недра, 1986.- 342 с.

18. Оппенгейм А.В., Шафер Р.В. Цифровая обработка сигналов. – М.: Связь, 1979. – 416 с.

21. Рапопорт М.Б. Вычислительная техника в полевой геофизике: Учебник для вузов. - М.: Недра, 1993.- 350 с.

Главный сайт автора ~ Лекции по сигналам ~ Практикум

О замеченных опечатках, ошибках и предложениях по дополнению: davpro@yandex.ru. Буду благодарен.

Copyright ©2005 Davydov А.V.

 


1 | 2 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.013 сек.)