АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Задание 2.3. Шифрование по алгоритму Эль-Гамаля

Читайте также:
  1. А) Задание по вводу в действие производственных мощностей
  2. Аналитическое задание
  3. ДЗ Домашнее задание по теме «Алкалоиды»
  4. Домашнее задание
  5. Домашнее задание
  6. Домашнее задание к занятию № 1 по теме
  7. Домашнее задание к занятию № 2 по теме
  8. Домашнее задание №1
  9. Домашнее задание №2
  10. Домашнее задание №4
  11. Дополнительное задание
  12. Дополнительное задание.

По таблице 2.4 выбрать сообщение m и секретный ключ x и провести шифрование по методу Эль-Гамаля для пяти абонентов. Вариант задания определяется последними цифрами номера студенческого билета. По номеру i (предпоследняя цифра) студент выбирает сообщение для зашифровывания, по j (последняя цифра) – требуемые для реализации этого алгоритма секретный ключ x. Исходные данные для других четырех секретных ключей x выбираются циклически по процедуре (i+1) и (j+1). Например, последние цифры 24. Выбираем для пяти абонентов- (сообщение, x) - (9,37), (11,43), (13,47), (3,51), (15,29). Результаты заносятся в таблицу по схеме «абонент – секретный ключ – открытый ключ». Аналогично таблице 2.5. Рекомендуемые значения для p = 30803, g = 2.

Таблица 2.4 - Исходные данные

I          
Сообщение          
G          
X          

 

I          
Сообщение          
G          
X          

 

Методические указания к заданию 2.3

Пусть имеются абоненты А, В, С,..., которые хотят передавать друг другу зашифрованные сообщения, не имея никаких защищен­ных каналов связи. Шифр, предло­женный Эль-Гамалем (Tahcr ElGamal), решает эту задачу, используя, в отличие от шифра Шамира, только одну пересылку со­общения. Фактически здесь используется схема Диффи-Хеллмана, чтобы сформировать общий секретный ключ для двух абонентов, передающих друг другу сообщение, и затем сообщение шифруется путем умножения его на этот ключ. Для каждого следующего со­общения секретный ключ вычисляется заново. Перейдем к точному описанию метода.

Для всей группы абонентов выбираются некоторое большое про­стое число р и число g, такие, что различные степени g суть раз­личные числа по модулю р. Числа р и g передаются абонентам в открытом виде (они могут использоваться всеми або­нентами сети).

Затем каждый абонент группы выбирает свое секретное число ci, 1 < сi < р - 1 и вычисляет соответствующее ему открытое число di,

di=gcimodp. (3.1)

Результат представлен в таблице 2.5.

Необходимо выбрать числа p и g так, чтобы они отвечали следующим требованиям:

gq mod p 1,

где p=2q+1.

Таблица 2.5- Ключи пользователей в системе Эль-Гамаля

Абонент Секретный ключ Открытый ключ
А сА dA
В сВ dB
С сD dC

 

Покажем теперь, как А передает сообщение абоненту В. Бу­дем предполагать, как и при описании шифра Шамира, что сообще­ние представлено в виде числа m < р.

Схема обмена ключами по алгоритму Эль-Гамаля представлена на рисунке 3.

 

Рисунок 3 - схема обмена ключами в системе Эль-Гамаля

 

Шаг 1. А формирует случайное число к, 1 к р-2, вычисляет числа

r = gk mod p, (3.2)

e = m dBk mod p (3.3)

и передает пару чисел (r, е) абоненту В.

Шаг 2. В, получив (r,е), вычисляет

m' = е rp-1-cBmod р. (3.4)

Ясно, что по аналогичной схеме могут передавать сообщения все абоненты в сети. Заметим, что любой абонент, знающий открытый ключ абонента В, может посылать ему сообщения, зашифрованные с помощью открытого ключа dB. Но только абонент В, и никто другой, может расшифровать эти сообщения, используя известный только ему секретный ключ сВ. Отметим также, что объем шифра в два раза превышает объем сообщения, но требуется только одна передача данных (при условии, что таблица с открытыми ключами заранее известна всем абонентам).

 

 

Контрольные вопросы

1. Дайте краткую характеристику системы шифрования по алгоритму Эль-Гамаля.

2. Сколько секретных ключей генерируется для пересылки, например, трех сообщений между абонентами А и В?

3. Какими основными преимуществами обладает эта система перед другими?

 

Список литературы

1.Романец Ю. В. Защита информации в компьютерных системах и сетях. /Под ред. В.Ф. Шаньгина. – М.: Радио и связь 1999

2.Петраков А.В. Основы практической защиты информации. 2-е издание Учебн. Пособие. – М.: Радио и связь, 200 с.

3. Рябко Б. Я., Фионов А.Н. Криптографические методы защиты информации. –М.: Горячая линия- Телеком, 2005.

 


1 | 2 | 3 | 4 | 5 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)