|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Geometric Interpretation of Homogeneous CoordinatesTransformation matrix 3×3 for two-dimensional homogeneous coordinates can be divided into four parts: (1.54) Recall that a, b, c and d are coefficients of the scaling, rotation, reflection, and shear, respectively. Elements m and n define the movement. Let us set that the values of p and q are not equal to 0. What effect do we get? In this case it is useful to consider the geometric interpretation. When p = q = 0 and s = 1, the homogeneous coordinate of the transformed vectors a always equal to 1. Geometrically, this result is interpreted as restricting the physical transformation of the plane h = 1. To illustrate the effect of conversion for p and q, different from zero, consider the following expression: (1.55) The transformed coordinate vector expressed in homogeneous coordinates, is now in a three-dimensional space defined as h = px + qy + l. This transformation is shown in Fig. 1.6, where the line AB, owned by the physical plane h = 1, is converted to a CD with a value of h <> 1, i.e., pX + qY - H + 1 = 0. However, the results are of interest belonging to the physical plane with h = 1, which can be obtained by geometric projection line CD from the plane h <> 1 back on the plane h = 1, using for the projecting rays passing through the origin. Using a rule for similar triangles (see Fig. 1.6) we obtain: (1.56) or in homogeneous coordinates: (1.57)
Fig.1.6. Geometric interpretation of homogeneous coordinates After normalizing the expression (1.55) by dividing into the value of homogeneous coordinates h, we obtain (1.58) or: (1.59) Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |