|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Homogeneous equationHomogeneous equations can be written in the form: М(x, y)dx+N(x, y)dy =0, where М(x, y) and N(x, y) - homogeneous functions of the same degree. To solve the homogeneous equation, we must make the substitution y = tx, then we obtain an equation with separable variables. At this change dy=tdx+xdt. Problem Statement: Givena first order linear differential equation and (possibly) an initial condition of the form
Find the general solution for the given equation. That is, find the one-parameter family of functions that are solutions of the given equation. Notice that the terms involving Step 0: Put the problem into standard form. If the problem is presented in any form other than the one described above, re-write the problem in the form above first. Then divide the equation through by
Step 1: Determine theintegrating factor, i.e., You will need to evaluate the integral by techniques from the calculus. Step 2: Multiply the equation through by the integrating factor found in the previous step. This step is straight forward algebra. Just remember to multiply both sides of the equation by Step 3: Integrate both sides of the equation. You should check (by mentally differentiating) that the left hand side is exactly the derivative of the product Step 4: Solve (algebraically) the result in Step 3 for y explicitly. The result is the general solution for the equation. Step 5: (only if an IVP is given) Apply the initial conditions and solve (algebraically) for the value of the constant of integration. This is accomplished by substituting A second order linear differential equation with constant coefficients is a differential equation of the form
where The characteristic equation associated with the differential equation above is
This quadratic has two (real or imaginary) roots: If
If
Example 9. Solve the following initial value problem: The characteristic equation is
so that the characteristic equation has two roots: The general solution to the second order linear differential equation is therefore In order to solve the initial value problem, we need to find the constants The solution to the initial value problem is therefore
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |