|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
PermutationsGiven Example 2. For three objects a, b, c we have 6 possible arrangements abc, acb, bac, bca, cab, cba. In the general case this number can be found as follows: For the first object we have n possibilities - once we have selected the first object, there remain
The number By the same argument one finds that the number of different arrangements of
Note that we have
Example 3. An urn contains nine balls which are labeled with the numbers 1, …,9. 4 balls are drawn at random without replacement. a) What is the probability to get the the numbers “2467’’ in this order. b) What is the probability that the drawn numbers contain the numbers “345’’. Solution: a) Our event “2467’’ consists of one element and the sample space has
b) This event can be realized in 12 outcomes, namely “x345’’ or “345x’’, where x is a number from 1, …,9 different from 345. We thus get
Example 4. In a room there are 23 persons. What is the probability that aren’t two of them with the same birthday. - Since the persons may have been born on any day of the year, we have
- In order that all birthdays be different, we have 365 choices for the first person, 364 for the second and so on. The searched for number therefore equals 356
In how many ways we can choose
By convention one puts
Example 5. Find the combinations of 3 elements from a, b, c, d. We have the following choices: {a, b, c}; {a, b, d}; {a, c, d}; {b, c, d}. Example. 6. cards are chosen from a pile of 52 cards. What is the probability to get 4 aces. - The number of possible outcomes equals the number of possible combinations of drawing 4 cards from a pile of 52 without taking care of the order, which is
the probability is therefore Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.133 сек.) |