|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Alternating Series Test
If converges if both of the following conditions are satisfied: 1) 2) Note: This does not say that if Test. The Alternating Series Test can only be used to prove convergence. If not by the Alternating Series Test. Definitions:
Suppose sn has a mix of positive and negative signed terms.
Ex: sn =
If all of the signs were positive, the sum would be higher because there would not be as much cancellation. If all of the signs were positive, then the series would converge by the p-series test. So it is true that this series also converges because it has the “advantage” of cancellation. This means that the given series converges absolutely (because it still would converge without the negative signs). If the signs of a series (a) are strictly alternating (not just some random term shave negative signs), (b) decrease in absolute value, and (c) go toward zero, then the series converges (and the error when you stop the series is contained in the first unused term). This is called Leibniz’ Theorem.
Ex: sn =
Ex: sn = 12 – 6 + 3 -
(Note: sn = 12 – 6 + 3 - If sn converges with its positive and negative signs but it would diverge if all of the signs were the same (such as all positive), then the series convergesconditionally (and not absolutely).
Ex: s1 =
s2 = So s1 converges conditionally.
Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (1.24 сек.) |