АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Asymptotes

Читайте также:
  1. Investigation of the function. Extremum of the function. Convexity, concavity and point of inflection. Asymptotes

If a function f gets close to a certain number L when x gets larger and larger, then we say that the limit as x goes to infinity is L and we write: . Likewise, if f gets close to L when x gets smaller and smaller, then the limit as x goes to negative infinity is L and we write: . In both cases, the line y = L is a horizontal asymptote of f.

If a function gets larger and larger as x gets close to a number a, then it “goes to infinity” and we write: . The line x = a is a vertical asymptote of f. Similarly, if gets smaller and smaller as x gets close to a, then it “goes to negative infinity” and we write: . Again, the line x = a is a vertical asymptote of f.

An important result:

If then . This is because one over a very large positive number and one over a huge negative number are both close to 0.

Slant asymptotes have an equation y = kx + q and their position is arbitrary except vertical. In order a straight line y = kx + q be an asymptote, the coefficients k and q must satisfy at least one pair of the following conditions

and (k and b are numbers).

Naturally these limits must be finite real numbers. A certain function can have maximally two inclined asymptotes.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)