АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Given a straight line, we denote the angle between this line and the x–axis by j and the interval cut out by the line on the x-axis by b

Читайте также:
  1. AGREEMENT BETWEEN SUBJECT AND VERB
  2. Angle, Saxon, England
  3. Between a Mother, her Son and the Doctor.
  4. Between Morphemes and Morphs.
  5. Clarify the Logical Relationship Between Your Ideas
  6. Compare the objects according to the given model.
  7. Comparison between British and American main newspapers in the aspect of the reader involvement into the text.
  8. Complete the texts, bearing in mind all the studied words. The first letters of the necessary words are given to help you.
  9. Composite sentences as polypredicative constructions. Types and means of connection between parts of composite sentences.
  10. Difference between Relative and Absolute Extrema
  11. Ex. 5. Look at the following list of 'crimes'. Try to rate each crime on a scale from 1 to 10 (1 is a minor misdemeanour, 10 is a very serious crime). They are given in no order.

 

 

у М(х;у)

y-b

B j

b N

0 x

 

Definition 1. The slope tangent of the angle between a straight line and the x –axis is called the slope of the line and denoted by

k =tan j.

Suppose that k is the slope of a line and b is its y –intercept. Let us write an equation of this line.

Take a point M (x; y) and consider the triangle D BMN, where for any point М of the straight line under consideration. We obtain

, where and , whence .

Thus, the equation of a straight line with a slope has the form

.

The equation of a straight line with given slope passing through a given point. Suppose that a straight line passes through a point М0(x0,y0) and has slope k.

By analogy with the equation of a straight line with a slope consider the triangle М0MN; we have for any point М on the under

consideration or .

Thus, the required equation is

y – y 0 = k (x–x 0).

The equation of a straight line passing through two points. Suppose that a straight line passes through two points М 1(х 1; у 1) and М 2(х 2; у 2).

 

Take a point M(x,y) on the line and consider the vectors

and .

These two vectors и lie on the same straight line and are collinear.

The collinearity condition is the proportionality of the perspective coordinates, i.e.,

This is the equation of a straight line passing through the two given points.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)