АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Gradients and directional derivatives

Читайте также:
  1. Definition of second order partial derivatives
  2. Ex. 2. Give derivatives of the following nouns.
  3. Higher Derivatives
  4. Notation for antiderivatives
  5. Table of derivatives and basic rules differentiation
  6. The derivative of the function. Table of derivatives. The differential of a function
  7. To customize linear gradients

Definition 1. Let z=f(x, y), the gradient of f, denoted by , is defined by the vector

If w= f(x, y, z), the gradient of f denoted by , is defined by

Note: the gradient of a function is a vector.

Definition of directional derivative. If w=f(x, y, z) and (unit vector), then the directional derivative of w in the direction of is defined by

provided the limit exists.

Theorem 1. If z=f(x, y), and if are both continuous, and is a unit vector in the direction of then

(dot product of the gradient and the unit vector gives the directional derivative in the direction of a given vector )

Theorem 2. If w=f(x, y, z), and if are continuous, and , then

(dot product of the gradient and the unit vector gives the directional derivative in the direction of the given vector)

The vector Chain rule:

is a differentiable function of t, then

.

Definition 2. is called the normal derivative because it is normal to the level curve and it is denoted by .

3.Differentiation of composite and implicit functions. Tangent and surface normal


The case of one independent variable

Theorem 3. If is differentiable function in point and , are differentiable functions of independent variable , then derivative of composite function calculated by the formula:

.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)