АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

The limit of a sequence

Читайте также:
  1. Function. The function limit. Fundamental theorems on limits
  2. Fundamental Theorems on Limits
  3. Limits- indeterminate forms and L’Hospital’s Rule
  4. Ukrainian Limited Liability Company

Definition 11. A sequence is an infinite set of terms, each of which is assigned a number. The terms of a sequence must obey a certain law.

Example.

 

Definition 12. A number is called the limit of a sequence if, for any e>0, there exists a number N(e) depending on e, such for .

Notation: .

Example.

.

Definition 13. The limit of a variable х is a number а such that for any e>0, there exists an х starting with which all х satisfy the inequalities .

Properties:

1. The limit of a constant number equals this number.

2. A variable can not have two different limits.

3. Some variables have no limit.

Definition 14. We saythat х tends to infinity if, for any number М, there exists an х such that, starting it, .

(a) M> 0, x>M, x ®+¥;

(b) M< 0, x<–M, x ® –¥.

Definition 15. A number b is called the limit of the function f(x) as х® а if, for any given e>0, there exists a small positive d depending on e (d(e)>0) such that, for any х satisfying the inequality , . Notation: .

Definition 16. The left limit of a function f(x) as x® a is the limit of f(x) as x® a, and х<а. Notation: .

Definition 17. The right limit of a function f(x) as x® a, is the limit of f(x) as x® a, and х>а. Notation: .

If the left limit equals the right limit and some number b, then b is the limit of the function as x® a.

The denominator of the last fraction is very small, and the fraction is very large: . Decreasing the denominator and, finally, divide 1 by 0, we obtain infinity, i.e.,

Using this relation, we find , .

Definition 18. A number b is called the limit of f(x) as х®¥ if, for any e>0, there exists a (large) number N depending on e such that for any .

Notation: .


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)