Concept of a derivative
Let be a fixed point and be a variable point on the curve as shown on about figure. Then the slope of the line AP is given by or . When the variable point P moves closer and closer to A along the curve , i.e. . the line AP becomes the tangent line of the curve at the point A. Hence, the slope of the tangent line at the point A is equal to . This term is defined to be the derivative of at and is usually denoted by . The definition of derivative at any point x may be defined as follows.
Definition 1. Let be a function defined on the interval and .
is said to be differentiable at (or have a derivative at ) if the limit exists. This lime value is denoted by or and is called the derivative of at .
If has a derivative at every point x in , then is said to be differentiable on .
Remark. As , the difference between x and is very small, i.e. tends to zero.
Usually, this difference is denoted by h or . Then the derivative at may be rewritten as
. (First Principle)
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | Поиск по сайту:
|