АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Concept of a derivative

Читайте также:
  1. Antiderivative. Indefinite integral and its properties. Table of integrals. Main methods of integration
  2. Application of the derivative.
  3. Concept about random events
  4. Concept and types of efficiency of investment projects
  5. Concept of the investment project
  6. Concepts in research
  7. Definition of meaning. Meaning and concept. Different approaches to study of meaning.
  8. Definition of second order partial derivatives
  9. Ex. 2. Give derivatives of the following nouns.
  10. Gradients and directional derivatives
  11. Higher Derivatives

 

Let be a fixed point and be a variable point on the curve as shown on about figure. Then the slope of the line AP is given by or . When the variable point P moves closer and closer to A along the curve , i.e. . the line AP becomes the tangent line of the curve at the point A. Hence, the slope of the tangent line at the point A is equal to . This term is defined to be the derivative of at and is usually denoted by . The definition of derivative at any point x may be defined as follows.

 

Definition 1. Let be a function defined on the interval and .

is said to be differentiable at (or have a derivative at ) if the limit exists. This lime value is denoted by or and is called the derivative of at .

If has a derivative at every point x in , then is said to be differentiable on .

Remark. As , the difference between x and is very small, i.e. tends to zero.

Usually, this difference is denoted by h or . Then the derivative at may be rewritten as

. (First Principle)

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)