Integration of trigonometric functions
1. Given an integral , i.e. the integrand is a rational function in terms of and . By the substitution the integral is reduced to an integral of a rational function. If , then , , and .
2. If = , then .
3. If = - , then .
If =- , then .
4. , т and п – even non-negative integers, then , .
5. For integrals we use following formulas:
- , then and .
LECTURE 9-10.
The definite integral. Properties of definite integrals. The Newton-Leibniz formula. Applications of definite integrals in economics. Calculation the arc length, the amount of body rotation. The improper integral. Applications of improper integrals in economics 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | Поиск по сайту:
|