АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Definition of functions of several variables

Читайте также:
  1. AIMS AND FUNCTIONS OF TRADE UNIONS
  2. Classical definition of probability
  3. Continuity of Functions
  4. Conversion, its definition.
  5. Definition 6. A square matrix is said to be non-degenerate, if it has nonzero determinant.
  6. Definition of a word
  7. Definition of Comparative Law
  8. Definition of meaning. Meaning and concept. Different approaches to study of meaning.
  9. Definition of Phoneme
  10. Definition of second order partial derivatives
  11. Definitions. Визначення.

 

We will be studying functions of several variables, say . It is often convenient to organize this list of input variables into a vector x . When n is two or three, we usually dispense with the subscripts and write x = or x = .

For example, consider the function f from to defined by

.

With x = , we can write this as

.

As we shall see, sometimes it is very helpful to think of the input variables as united into a single vector variable x, while other times it is helpful to think of them individually and separately.

We will also be considering functions from to . These take vector variables as input, and return vector variables as output. For example, consider the function F from to given by

.

Introducing the functions and , and with f(x; y) defined as in , we can rewrite as

.

Often, the questions we ask about F(x) can be answered by considering the functions f, g and h one at a time.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)