|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Parabola
Definition 5. The locus of points for which the distance to a fixed point equals the distance to a given straight line (a directrix) is called a parabola. Let us draw the perpendicular through a fixed point to the given straight line and take it for the x -axis. From the middle point of the segment joining the focus to the given straight line we draw a perpendicular and take it for the y -axis.
p М(х;у) r 0 x
To derive the equation of the parabola, we take an arbitrary point М(х;у) on it and write down the characteristic feature of a parabola as a mathematical formula. The distance from the focus to the directrex is called the parameter of the parabola and denoted by p. Let us find the distance from the point М(х;у) to the focus: , and = . By definition, these distances are equal: .
Let us transform this, relation by squaring both sides: ; . We obtain . This is the classical equation of a parabola. The parabola passes through the origin (0;0), because it satisfies equation (20). Suppose that the parameter is a positive number р >0; then, since у2 >0, we have x >0, and the parabola is contained in the right half-plane. If p <0, then x <0, and the parabola is contained in the left half-plane y у p>0 p<0 0 x 0 х M0(x0,y0)
Consider the equation of a parabola in the “school” form . Let us analyze this equation by analogy with (20): if p >0, then y> 0, and the branches of the parabola are directed upward; if p <0, then y <0, and the branches of the parabola are directed downward. p >0 y p <0 y 0 x
0 x
The eccentricity of the parabola, that is, the ratio of the focal radius to the distance from a point to the directrix, equals 1, i.e., .
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.007 сек.) |