АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Parabola

Читайте также:
  1. Analytic geometry in the plane.
  2. General Equations for Conic Sections
  3. Parabolic Interpolation
  4. PRACTICAL CLASS № 9-10.
  5. Problem 3.

Definition 5. The locus of points for which the distance to a fixed point equals the distance to a given straight line (a directrix) is called a parabola.

Let us draw the perpendicular through a fixed point to the given straight line and take it for the x -axis. From the middle point of the segment joining the focus to the given straight line we draw a perpendicular and take it for the y -axis.

p М(х;у)

r

 
 


0 x

 

To derive the equation of the parabola, we take an arbitrary point М(х;у) on it and write down the characteristic feature of a parabola as a mathematical formula.

The distance from the focus to the directrex is called the parameter of the parabola and denoted by p. Let us find the distance from the point М(х;у) to the focus:

,

and = .

By definition, these distances are equal:

.

 

Let us transform this, relation by squaring both sides:

; .

We obtain

.

This is the classical equation of a parabola.

The parabola passes through the origin (0;0), because it satisfies equation (20).

Suppose that the parameter is a positive number р >0; then, since у2 >0, we have x >0, and the parabola is contained in the right half-plane. If p <0, then x <0, and the parabola is contained in the left half-plane

y у

p>0 p<0

0 x 0 х

M0(x0,y0)

 

 

Consider the equation of a parabola in the “school” form . Let us analyze this equation by analogy with (20): if p >0, then y> 0, and the branches of the parabola are directed upward; if p <0, then y <0, and the branches of the parabola are directed downward.

p >0 y p <0 y

0 x

 

0 x

 

The eccentricity of the parabola, that is, the ratio of the focal radius to the distance from a point to the directrix, equals 1, i.e.,

.

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.007 сек.)