АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

General Equations for Conic Sections

Читайте также:
  1. Affixation as a productive way of word-formation. General characteristics of suffixes and prefixes
  2. Differential equations
  3. Differential equations of the first and second order. Homogeneous and non-homogeneous linear differential equations
  4. Equations with separable variables
  5. Equations with undetermined coefficients
  6. Fig. 3.67 A general plan of construction site with engineering networks
  7. General
  8. GENERAL CHARACTERISTICS OF THE STRUCTURE OF ENGLISH
  9. GENERAL CHARACTERISTICS OF THE STRUCTURE OF ENGLISH
  10. General Characteristics of XIX-XX Centuries’ Philosophy. Historical Social and Cultural Grounds for Its Development
  11. General Classifications of Legal Subjects

The general form of the implicit equation of the second degree

(3.12)

generates various two-dimensional curves called conic sections. Fig.3.2 shows three types of conic sections – parabola, hyperbola and ellipse. Circle is a special case of the ellipse.

In determining the coefficients a, b, c, d, e and f we can produce different conic sections. If a section is given with respect to the local coordinate system and passes through its origin, then f = 0. To draw a curve through the data points we use the boundary conditions.

If c = 1, then the curve segment between two points is determined by five independent conditions, which are calculated from the remaining coefficients a, b, d, e and f. For example, you can specify the location of extreme points, the slope of the curve in them, and an intermediate point on the curve.

If b = 0, c = 1, then the analytic representation of the curve obtained by using only four additional conditions, such as those end-points and the slope of the curve in them. Curve for a = 1, b = 0 and c = 1 is even easier

(3.13)

Fig.3.2. Conic Sections

Three conditions for the calculation of d, e and f are two end points and the slope of the curve in one of them, or the two end points and the third point on the curve.

If a = b = c = 0 is obtained by a straight line its equation is

(3.14)

Conic sections are at the center (an ellipse and a hyperbola) or off-center (a parabola). In addition, there are a number of degenerate forms, which are central.

Thus, the equation is a parabola with b2 - 4ac = 0, and the central section with b2 - 4ac <> 0. If a section is central and b2 - 4ac <0, the equation represents an ellipse, and if b2 - 4ac> 0 the equation represents a hyperbole.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)