АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Total differential

Читайте также:
  1. Differential equations
  2. Differential equations of the first and second order. Homogeneous and non-homogeneous linear differential equations
  3. Functions of several variables. Full differential
  4. Order and degree of a differential equation
  5. The derivative of the function. Table of derivatives. The differential of a function
  6. Total probability formula

In the case of a function of a single variable the differential of the function y = f(x) is the quantity dy = f '(x) Δx.

This quantity is used to compute the approximate change in the value of f(x) due to a change Δx in x. As is shown in Fig. 2,

Fig 2.

 

Δy = CB = f(x + Δx) - f(x), while dy = CT = f '(x)Δx.

When Δx is small the approximation is close. Line AT represents the tangent to the curve at point A. In the case of a function of two variables the situation is analogous. Let us start at point A(x1, y1, z1) on the surface z = f(x, y) shown in Fig. 3 and let x and y change by small amounts Δx and Δy, respectively. The change produced in the value of the function z is

 

 

Δz = CB = f(x1 + Δx, y1 + Δy) - f(x1, y1).

An approximation to Δz is given by .

When Δx and Δy are small the approximation is close. Point T lies in that plane tangent to the surface at point A.

The quantity .

is called the total differential of the function z = f(x, y). Because is customary to denote increments Δx and Δy by dx and dy, the total differential of a function z = f(x, y) is defined as

.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)