АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

The vector product in coordinates. Consider vectors

Читайте также:
  1. Affixation as a productive way of word-formation. General characteristics of suffixes and prefixes
  2. E.g. Consider the pairs
  3. Factors of production in the short run and in the long run
  4. He is most famously known for his stories about the detective Sherlock Holmes, which are generally considered a major innovation in the field of crime fiction.
  5. Inner Product and its Properties
  6. Non-productive ways of word-formation.
  7. Ownership of the Means of Production
  8. Payment for Production Assets
  9. Product Positioning (Позиціонування товару)
  10. Production Life Cycle
  11. Profit as the Regulator of Production
  12. The elementary operations over vectors

and .

Let us find the coordinate of their vector product. Property 4 allows us to multiply them term by term

.

 

Since the vector products of collinear vectors equal zero, it follows that the first, fifth and ninth terms are null vectors:

Consider the vector products of the unit mutually perpendicular vectors and . Since, , and is a right triple of vectors, it follows from the definition of vector product and its commutativity that

 
 

 


 

; ; ; ; ; . (*)

 

Substituting the products of unit vectors into the required vector product, we obtain

Note that the right – hand side is the expansion of a third – order determinant along the row with elements and .

Thus, the coordinates of the vector product are determined form the third – order determinant as

,

and its absolute value is

.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)