АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Vector Product and its Properties

Читайте также:
  1. Affixation as a productive way of word-formation. General characteristics of suffixes and prefixes
  2. Antiderivative. Indefinite integral and its properties. Table of integrals. Main methods of integration
  3. Determinants and their properties
  4. Factors of production in the short run and in the long run
  5. Inner Product and its Properties
  6. Non-productive ways of word-formation.
  7. Ownership of the Means of Production
  8. Payment for Production Assets
  9. Product Positioning (Позиціонування товару)
  10. Production Life Cycle
  11. Profit as the Regulator of Production
  12. The elementary operations over vectors

 

We have considered a product of two vectors equal to a number (inner product)

.

What happens if the product of two vectors is a vector:

?

Consider two vectors and :

 

Definition 2. The vector product of two vectors and is a vector , satisfying the following conditions:

(1) the absolute value of equals the product of the absolute values of the two given vectors and the sine of the angle between them:

; (*)

(2) the vector is perpendicular to both vectors and :

;

(3) the three vectors , and constitute a right triple of vectors (that is, looking from the tail of, we see that the shorter rotation from to is carried out anticlockwise). The vector product of and is denoted by

.

Property 1. The absolute value of the vector product of two vectors is equal to the area of the parallelogram spanned by these vectors:

.

Property 2. The vector product is anticommutative, i.e.,

.

Property 3. To multiply a vector product by a number l, it is suffices to multiply one of the vectors by this number (without proof):

.

Property 4. Vector product is associative:

 

.

Property 5. The vector product of collinear vectors is equal to zero, and vice versa, if the vector product of two vectors is zero, then these vectors are collinear.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)