Suppose that there is the dependence between argument х and function у given by the equation, unsolvable with regard to у. Such dependence defines у as the implicit function of х:
F(x;y)= 0. (*)
To obtain derivative у in variable х it is required to differentiate equation (*) in х and у, considering у as the composite function of х, i.e., multiplying by y¢х. In the obtained equation, we find the similar terms containing y¢х. And, solving it as the equation, we obtain the derivative y¢х.
Differentiation of the Function Given Parametrically
Suppose that there is function y(х) given parametrically:
Suppose that functions j(t) and y(t) are differentiable in parameter t and j¢t¹0, there is also the inverse function t=t-1(x). Then the derivative of function can be obtained by the formula: .
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг(0.006 сек.)