АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Implicit Function Derivative

Читайте также:
  1. AIMS AND FUNCTIONS OF TRADE UNIONS
  2. Antiderivative. Indefinite integral and its properties. Table of integrals. Main methods of integration
  3. Application of the derivative.
  4. Classification: by function
  5. Concept of a derivative
  6. Continuity of Functions
  7. Definition of functions of several variables
  8. Definition of second order partial derivatives
  9. Despite its apparent simplicity, it is a sophisticated facet” indicates that the writer thinks that
  10. Ex. 2. Give derivatives of the following nouns.
  11. Exercise 21 Match each function with the department responsible for it. Make sentences using expressions from the exercise above.
  12. Exists, performance, churches, restored, repertoire, ones, nationalities, orthodox, function, destroyed, shapes, in accordance with, competition

Suppose that there is the dependence between argument х and function у given by the equation, unsolvable with regard to у. Such dependence defines у as the implicit function of х:

F(x;y)= 0. (*)

To obtain derivative у in variable х it is required to differentiate equation (*) in х and у, considering у as the composite function of х, i.e., multiplying by х. In the obtained equation, we find the similar terms containing х. And, solving it as the equation, we obtain the derivative х.

Differentiation of the Function Given Parametrically

Suppose that there is function y(х) given parametrically:

Suppose that functions j(t) and y(t) are differentiable in parameter t and t¹0, there is also the inverse function t=t-1(x). Then the derivative of function can be obtained by the formula: .


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)