Main methods of integration
Integration by substitution (or change of variable)
Steps for Integrating by Substitution—Indefinite Integrals:
1. Choose a substitution u = g(x), such as the inner part of a composite function.
2. Compute .
3. Re-write the integral in terms of u and du.
4. Find the resulting integral in terms of u.
5. Substitute g(x) back in for u, yielding a function in terms of x only.
6. Check by differentiating.
If f(x) is continuous function, F(x) - its antiderivative and φ(х) - differentiable function, then
In the particular case
Example 4. To find . Notice that the numerator is the derivative of the denominator
Let . Differentiating gives and hence .
Substituting this change of variable the integral becomes
Now by expressing this result in terms of we have shown that
.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | Поиск по сайту:
|