АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Билет 5. 1. Электромагнитные реле – это коммутационные КУ, в которых управление переключением цепей осуществляется с помощью магнитного поля

Читайте также:
  1. A) Билетный сбор
  2. Билет 10
  3. Билет 10
  4. Билет 10. Образы основных греческих богов
  5. Билет 11
  6. Билет 11
  7. Билет 11.
  8. Билет 12
  9. Билет 12.
  10. Билет 13
  11. Билет 13
  12. Билет 14

1. Электромагнитные реле – это коммутационные КУ, в которых управление переключением цепей осуществляется с помощью магнитного поля, создаваемого специальной катушкой индуктивности.

Электромагнитные реле предназначены для выполнения разнообразных функций: дистанционного или автоматического управления работой отдельных устройств, блоков систем или аппаратуры в целом; сопряжения технических устройств, в том числе работающих на различных энергетических уровнях и основанных на разных физических принципах действия; для кодирования, преобразования и распределения электрических сигналов, особенно в многоканальных системах управления, сигнализации, контроля, защиты и т. п.

Принцип действия якор­ного реле понятен из рис. 11.17, а, приведенного выше. В нейтральном якорном реле постоянного тока при протекании постоянного тока по обмотке электромагнита 1 в магнитопроводе 2 возникает магнитный поток Ф. При этом к зазору прикладывается практически вся магнитодвижущая сила электромагнита. Под действием МДС в зазоре развивается тяговое усилие F м. Тяговое усилие приводит в движение якорь 3, следствием чего является замыкание или размыкание электрических контактов 5.

В реле переменного тока (рис. 11.18, а) вибрации подвижной системы, возникающие при питании электромагнита переменным напряжением, устраняются путем создания в сердечнике 4 двух или нескольких магнитных потоков, сдвинутых по фазе относительно друг друга. С этой целью на стержне электромагнита около воздушного зазора делается паз, в который вкладывается

короткозамкнутый виток. Составляющая основного магнитного потока, пересекая короткозамкнутый виток, наводит в нем ЭДС. В свою очередь, возникновение ЭДС в короткозамкнутом витке приводит к появлению в нем индукционного тока и, как следствие, магнитного потока Ф в, отстающего по фазе от основного магнитного потока. По этой причине результирующий магнитный поток в сердечнике никогда не достигнет нулевого значения.

2. Для получения простейшей модели электропривода постоянного тока, описывающей установившиеся (статические) режимы и позволяющей получить основные характеристики, воспользуемся схемой на рис. 3.1.
Будем полагать, что якорная цепь питается от независимого источника с напряжением U *, сопротивление цепи якоря R постоянно, магнитный поток Ф определяется лишь током возбуждения и не зависит от нагрузки (реакция якоря не проявляется), индуктивные параметры цепей пока не учитываются, поскольку рассматриваются лишь установившиеся (статические) режимы.

Рис. 3.1. Схема электропривода с двигателем постоянного тока
Взаимодействие тока I в обмотке якоря с магнитным потоком Ф, создаваемым обмотками, расположенными на полюсах машины, приводит в соответствии с законом Ампера и возникновению электромагнитных сил, действующих на активные проводники обмотки и, следовательно, электромагнитного момента М:
М = kФI (3.1)
где k - конструктивный параметр машины.
В движущихся с угловой скоростью в магнитном поле под действием момента М проводниках обмотки якоря в соответствии с законом Фарадея наводится ЭДС вращения Е:
E = kФw, (3.2)
направленная в рассматриваемом случае встречно по отношению к вызвавшей движение причине – ЭДС источника питания U.
В соответствие со вторым законом Кирхгоффа для якорной цепи машины справедливо уравнение:
U-E = IR. (3.3)
Уравнения (3.1)-(3.3) – простейшая, но достаточная для понимания главных процессов в электроприводе постоянного тока модель. Для решения практических задач они должны быть дополнены уравнением движения с моментом потерь , входящим в Мс,

и уравнениями цепи возбуждения для конкретной схемы электропривода.
Разумеется, в условиях каждой задачи должно быть строго оговорено, что задано и известно, а что нужно искать.
Рассмотрим подробнее роль, которую играет ЭДС Е в процессе преобразования энергии, осуществляемом электрической машиной. Если существовал некоторый установившийся режим М1 = Мс1, а затем Мс изменился, например, возрос до величины Мс2, то для получения нового установившегося режима необходимо иметь средство, которое изменило бы М, приведя его в соответствие с новым значением Мс. В двигателе внутреннего сгорания эту роль выполнит оператор, увеличив подачу топлива; в паровой турбине – специальный регулятор, который увеличит подачу пара. В электрической машине эту роль выполнит ЭДС. Действительно, при возрастании Мс скорость двигателя начнет снижаться, значит уменьшится в соответствии с (3.2) и ЭДС (полагаем для простоты, что Ф, а также U и R – постоянные). Из (3.3) следует, что
,
следовательно, ток вырастет, обусловив тем самым рост момента в соответствии с (3.1). Двигатель автоматически, без каких-либо внешних воздействий перейдет в новое установившееся состояние. Эти процессы будут иметь место при любых величинах и знаках Мс, то есть ЭДС будет выполнять функцию регулятора как в двигательном, так и в тормозных режимах работы машины.

3. В этом двигателе (рис. 8.61, а) ток возбуждения Iв = Ia, поэтому магнитный поток Ф является некоторой функцией тока якоря I a. Характер этой функции изменяется в зависимости от нагрузки двигателя. При I a < (0,8 ÷ 0,9) Iном, когда магнитная система машины не насыщена, Ф = kф Ia, причем коэффициент пропорциональности kф в значительном диапазоне нагрузок остается практически постоянным. При дальнейшем возрастании тока якоря поток Ф возрастает медленнее, чем I a, и при больших нагрузках (Ia > Iном) можно считать, что Ф ≈ const. В соответствии с этим изменяются в зависимости n = f(Ia) и М = f(Ia).

 

При Ia <(0,8 ÷ 0,9)Iном скоростная характеристика двигателя n = f(Ia) (рис. 8.61, б) имеет форму гиперболы, так как частота вращения

(8.87)

n = U - Ia ∑Ra = U - Ia ∑Ra = C1 U - C2.
ceФ ce kф Ia ce kф Ia Ia

где С1 и С2 - постоянные.

При I a > I ном скоростная характеристика становится линейной, так как частота вращения

(8.88)

n = U - Ia ∑Ra = U - Ia ∑Ra = C'1U - C'2Ia
ceФ ceФ ce Ф

где С '1 и С '2 — постоянные.

Аналогично можно получить зависимость электромагнитного момента от тока якоря М = f(Ia). При Ia < (0,8 ÷ 0,9) I ном моментная характеристика М = f(Ia) имеет форму параболы. (рис. 8.61,б), так как электромагнитный момент

(8.89)

М = сМ Ф Ía = сМk ф 2= C 3 Iа 2,

где С 3 — постоянная.

При I a > I ном моментная характеристика линейная, так как

(8.90)

М = сМ Ф Ia = C' 3 Iа,

где C'3 — постоянная. Механические характеристики n = f(М) (рис. 8.62, а) можно построить на основании зависимостей n = f(Ia) и М = f(Ia). При Ia < (0,8 ÷ 0,9) I ном частота вращения изменяется по закону

(8.91)

n = U - Ra = C4 U - C2,
ce kф√M/(cм kф) ce kф √M

где С4 — постоянная.

При I a > I ном зависимость n = f(М) становится линейной.

Рис. 8.62. Механические и рабочие характеристики двигателя с последовательным возбуждением

Включая в цепь якоря пусковые реостаты с сопротивлениями R п1, R п2 и R п3 кроме естественной характеристики 1 можно получить семейство реостатных характеристик 2, 3 и 4, причем, чем больше R п, тем ниже располагается характеристика.

Рабочие характеристики двигателя с последовательным возбуждением приведены на рис. 8.62, б. Зависимости n = f(Р2) М = f(Р2) являются нелинейными; зависимости P1 = f(Р2), Iа = f(Р2) и η = f(Р2) имеют примерно такой же характер, как и у двигателя с параллельным возбуждением.

Из рассмотрения рис. 8.62, а следует, что механические характеристики рассматриваемого двигателя (естественная и реостатные) являются мягкими и имеют гиперболический характер. При малых нагрузках частота вращения и резко возрастает и может превысить максимально допустимое значение (двигатель идет в «разнос»). Поэтому такие двигатели нельзя применять для привода механизмов, работающих в режиме холостого хода или при небольшой нагрузке (различные станки, транспортеры и пр.). Обычно минимально допустимая нагрузка составляет (0,2 ÷ 0,25) I ном; только двигатели малой мощности (десятки ватт) используют для работы в устройствах, где возможен холостой ход. Чтобы предотвратить возможность работы двигателя без нагрузки, его соединяют с приводным механизмом жестко (зубчатой передачей или глухой муфтой); применение ременной передачи или фрикционной муфты для включения недопустимо.

Несмотря на указанный недостаток, двигатели с последовательным возбуждением широко применяют в различных электрических приводах, особенно там, где имеется изменение нагрузочного момента в широких пределах и тяжелые условия пуска (грузоподъемные и поворотные механизмы, тяговый привод и пр.). Это объясняется тем, что мягкая характеристика рассматриваемого двигателя более благоприятна для указанных условий работы, чем жесткая характеристика двигателя с параллельным возбуждением. При жесткой характеристике частота вращения п почти не зависит от момента М, поэтому мощность

(8.92)

Р 2 = М ω = 2π /60 = С 5 М,

где С5 — постоянная.

При мягкой характеристике двигателя с последовательным возбуждением частота вращения и обратно пропорциональна √М, вследствие чего

(8.93)

Р 2 = М ω = 2π /60 = С' 5 √М,

где С5 — постоянная.

Поэтому при изменении нагрузочного момента в широких пределах мощность Р2, а следовательно, мощность Р1 и ток Iа у двигателей с последовательным возбуждением изменяются в меньших пределах, чем у двигателей с параллельным возбуждением; кроме того, они лучше переносят перегрузки. Например, при заданной кратности перегрузки по моменту М/М ном = k м ток якоря в двигателе с параллельным возбуждением увеличивается в k м раз, а в двигателе с последовательным возбуждением — только в √kм раз. Поэтому двигатель с последовательным возбуждением развивает больший пусковой момент, так как при заданной кратности пускового тока I п /I ном = k i пусковой момент его М п = ki2М ном , а у двигателя с параллельным возбуждением М п= kiМ ном.

Указанные преимущества двигателей с последовательным возбуждением наиболее четко проявляются в простых приводах, не имеющих систем автоматического управления. При наличии таких систем предпочтение всегда отдается двигателям с параллельным или независимым возбуждением, у. которых с помощью регуляторов тока возбуждения можно получить требуемую форму механической характеристики, например гиперболическую.

4. Концевые выключатели являются электромеханическими аппаратами, которые предназначены для автоматического отключения привода механизма при достижении им крайних установленных положений. Будучи связанными с механизмом передвижения, они выключат его при подходе крана к упору рельсовых крановых путей, на механизме изменения вылета – при достижении стрелой наибольшего и наименьшего вылетов, на механизме подъема груза концевые выключатели играют роль ограничителя высоты подъема, отключая лебедку при подходе грузозахватного приспособления к головке стрелы. Кроме этого, концевые выключатели могут входить в конструкцию каких-либо крановых устройств, как это имеет место в дифференциальном механизме грейферных лебедок, в ограничителях массы груза, в противоугонных устройствах и т.д.

Из многочисленных конструкций концевых выключателей рассмотрим рычажные и винтовые, поскольку они получили наибольшее распространение.

Рычажный выключатель (рис. 88,а) состоит из корпуса, внутри которого на оси 4 находятся кулачки 5. Они могут постоянно замыкать контакты 3 или удерживать их в разомкнутом состоянии, или часть контактов может быть разомкнута, а часть – замкнута. Это зависит от той функции, которую должен выполнять концевой выключатель. На оси закреплен рычаг 2 с роликом 1. при отклонении рычага при наезде на упор происходит поворот кулачков, что ведет к размыканию (замыканию) контактов и воздействию на цепь управления механизмом или устройством (рис. 88,б).

Простейшим ограничителем хода крана (рис. 88,в) может быть рычажный выключатель 6, установленный на тележке, и односкосный клин 7 (линейка), расположенный у концевых участков рельсовых путей. При движении машины по направлению стрелки ролик выключателя наезжая на линейку, отклонит рычаг, что приведет к размыканию контакта питания электродвигателя механизма передвижения. Второй контакт выключателя остается замкнутым, что позволяет крану передвигаться в обратном направлении при соответствующем переключении контроллера крановщиком.

Рычажный выключатель можно использовать для ограничения высоты подъема груза, например в варианте, изображенном на рис. 88,г. Это устройство размещают на головке стрелы. На ось 9 выключателя вместо рычага с роликом насаживают двуплечий рычаг 10. На одном его плече помещают противовес 8, а к другому на канате 11 подвешивают груз 12. при достижении крайнего верхнего положения крюковая подвеска 13 своим ходом поднимает груз. Это нарушает равновесие системы, и противовес опускается, что ведет к повороту оси выключателя и размыканию цепи питания электродвигателя механизма подъема груза.

На другом принципе работает концевой выключатель винтового типа (рис.88,д). Он состоит из винта 14, получающего вращение от механизма, который он обслуживает, посредством зубчатой 17 или цепной передачи. На винте находится гайка 15. При работе механизма вращение винта заставляет гайку двигаться вдоль него в направляющих 16. Ход гайки рассчитан так, что при достижении механизмом одного установленного предела она своим движением нажмет на рычаг 18, разомкнет мостиковые контакты 20, и механизм выключится. При реверсировании механизма гайка движется в обратном направлении. Тогда пружина 19 возвратит рычаг в исходное положение, и ранее разомкнутый контакт замкнется. При достижении гайкой противоположно расположенного рычага механизм снова выключится, и это будет соответствовать его второму установленному пределу.

 

5. Возможны два режима электрического торможения: динамическое торможение и торможение противовключением. Рекуперативное торможение осуществить не возможно, так как э.д.с. вращения Е не может быть больше напряжения якорного источника U. Динамическое торможение осуществляется двумя способами: с самовозбуждением и с независимым возбуждением. Схема включения двигателя и механические характеристики для первого случая приведены на рис. 2.10.

б) характеристики двигателя в режиме динамического торможения с самовозбуждением.

Двигатель отключен от напряжения источника, а обмотка возбуждения переключена таким образом, чтобы направление тока IВ в ней было таким же как а в двигательном режиме (см. рис. 2.8). Это сохранение направления тока исключает уничтожение малого остаточного потока, связанного с намагничиванием статора двигателя. Этот поток и является причиной самовозбуждения: в обмотке якоря, вращающегося под действием инерционных сил в прежнем направлении, наводится э.д.с. Е, направление которой такое же, как и в двигательном режиме. Под действием Е в контуре динамического торможения появляется ток, что приводит к увеличению потока Ф, э.д.с. Е и тока IЯ. Поскольку ток IЯ по отношению к двигательному режиму имеет противоположное направление, момент двигателя становится тормозным. Двигатель из точки А в первом квадранте переходит в точку В или С на характеристике динамического торможения во втором квадранте. Вначале процесс самовозбуждения проходит очень интенсивно и это приводит к броску тормозного момента, способного вызвать удары в механической части привода. Поэтому чаще применяют динамическое торможение с независимым возбуждением.

торможения с независимым возбуждением.Зажимы якоря двигателя закорачиваются на сопротивление динамического торможения RДТ, а обмотка возбуждения подключается к напряжению источника через сопротивление RВ. Ток в ней направлен как и в двигательном режиме и устанавливается равным номинальному. Характеристики аналогичны характеристикам ДПТ с независимым возбуждением: они линейны, расположены во втором квадранте и проходят через начало координат.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.008 сек.)