АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Назначение и виды электроприводов

Читайте также:
  1. I. Назначение, классификация, устройство и принцип действия машины.
  2. Wadmerger: назначение звуков wad-файлам и объектам
  3. Активы организации, их назначение и использование.
  4. Виды и типы схем, их назначение
  5. Виды столовых приборов и их предназначение
  6. Выбор темы и назначение руководителя курсовой работы
  7. Досрочное назначение трудовой пенсии по старости лицам, осуществлявшим лечебную деятельность
  8. Досрочное назначение трудовой пенсии по старости лицам, работавшим с особыми условиями труда
  9. Инвентаризация: виды и назначение. Порядок проведения и оценка результатов инвентаризации
  10. Каково назначение прибора ДП-22В?
  11. Материнская плата и её предназначение
  12. Назначение

Электропривод - электромеханическая система, состоящая из преобразователей электроэнергии, электромеханических и механических преобразователей, управляющих и информационных устройств и устройств сопряжения с внешними электрическими, механическими, управляющими и информационными системами, предназначенная для приведения в движение исполнительных органов рабочей машины и управления этим движением в целях осуществления технологического процесса.

Назначение электропривода Основное назначение электропривода – преобразовывать электрическую энергию в механическую и управлять этим процессом. В связи с этим энергетические показатели и характеристики электропривода имеют первостепенное значение, тем более, что электропривод потребляет около 60-65% электроэнергии, производимой в стране.
Любой процесс передачи и преобразования энергии сопровождается ее потерями, т.е. входная мощность Рвх всегда больше выходной Рвых на величину потерь DР, и очень важно, сколь велики эти потери.
Энергетическую эффективность процесса в данный момент обычно оценивают посредством коэффициента полезного действия (КПД), определяемого как
Важными энергетическими характеристиками изделия – двигателя, преобразователя, редуктора или электропривода в целом – служит номинальный КПД
виды

электропривод вращательного движения:Электропривод, обеспечивающий вращательное движение исполнительного органа рабочей машины  
электропривод поступательного движения:Электропривод, обеспечивающий поступательное линейное движение исполнительного органа рабочей машины  
электропривод возвратно-поступательного [вибрационного] движения: Электропривод, обеспечивающий возвратно-поступательное [вибрационное] движение исполнительного органа рабочей машины  
электропривод непрерывного движения:Электропривод, обеспечивающий непрерывное движение исполнительного органа рабочей машины  
электропривод дискретного движения: Электропривод, обеспечивающий дискретное перемещение исполнительного органа рабочей машины  
моментный электропривод: Электропривод, обеспечивающий заданный момент или усилие на исполнительном органе рабочей машины  
позиционный электропривод: Электропривод, обеспечивающий перемещение и установку исполнительного органа рабочей машины в заданное положение  
реверсивный электропривод:Электропривод, обеспечивающий движение исполнительного органа рабочей машины в любом из двух противоположных направлениях  
нереверсивный электропривод: Электропривод, обеспечивающий движение исполнительного органа рабочей машины только в одном направлении  
регулируемый электропривод:Электропривод, обеспечивающий управляемое изменение координат движения исполнительного органа рабочей машины  

4. принцип работы реле постоянного тока. основные параметры реле

Реле ́ - электрический аппарат, предназначенный для коммутации электрических цепей (скачкообразного изменения выходных величин) при заданных изменениях электрических или не электрических входных величин.

Работа электромагнитных реле основана на использовании электромагнитных сил, возникающих в металлическом сердечнике при прохождении тока по виткам его катушки. Детали реле монтируются на основании и закрываются крышкой. Над сердечником электромагнита установлен подвижный якорь (пластина) с одним или несколькими контактами. Напротив них находятся соответствующие парные неподвижные контакты.

В исходном положении якорь удерживается пружиной. При подаче управляющего сигнала электромагнит притягивает якорь, преодолевая её усилие, и замыкает или размыкает контакты в зависимости от конструкции реле. После отключения управляющего напряжения пружина возвращает якорь в исходное положение. В некоторые модели, могут быть встроены электронные элементы. Это резистор, подключенный к обмотке катушки для более чёткого срабатывания реле, или (и) конденсатор, параллельный контактам для снижения искрения и помех.

Электрический аппарат, реализующий релейный закон управления, называется реле. В реле при плавном изменении управляющего (входного) параметра до определенного заданного значения управляемый (выходной) параметр изменяется скачкообразно. При этом хотя бы один из этих параметров должен быть электрическим.

 

5.зануление и основные требования к контуру очагового заземления

Зануле́ние — это преднамеренное электрическое соединение открытых проводящих частей электроустановок, не находящихся в нормальном состоянии под напряжением, с глухозаземлённой нейтральной точкой генератора или трансформатора, в сетях трёхфазного тока; с глухозаземлённым выводом источника однофазного тока; с заземлённой точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности.

первая — это проводящие системы, по отношению к которым производится отсчет напряжений сигналов или питания, при этом потенциал самой системы принимается равным нулю. Примерами таких систем могут служить, например, так называемая ^’сигнальная земля" в аналоговых измерительных системах или так называемая "физическая земля" и т.п. Условно назовем такие системы земель базовыми. Вторая группа соединений предназначена для образования путей протекания обратных сигнальных и питающих токов. Примерами таких систем могут служить так называемая "общая шина" вторичного питания, "нейтраль" или "нулевой провод" первичного питания и т.п. Условно назовем такие системы соединений возвратными. Третья группа поверхностей и соединений служит для экранирования изделий и их частей, восприимчивых к помехам или излучающих помехи. Такие системы называюся экранирующими. И, наконец, четвертая группа соединений предназначена для исключения возможности поражения обслуживающего персонала электрическим током. Такие системы соединений обычно называют защитными. Перечисленные системы редко удается выполнить совершенно обособленными. Обычно совмещены базовая и возвратная системы в цепях первичного и вторичного питания., а также экранирующая и защитные системы. На практике чаще всего приходится иметь дело с радиальной системой заземления средств обработки информации, которая имеет меньше общих участков для протекания обратных сигнальных и питающих токов. При этом следует иметь ввиду, что шина заземляющего контура не должна иметь замкнутых контуров (петель), а должна быть выполнена в виде ветвящегося дерева с сопротивлением контура не более 1 Ома. Такое требование к заземляющему контуру обычно удовлетворяется применением в качестве заземлителей:

• стержневых заземлителей;

• стержней из металла, обладающих высокой электропроводностью, погруженных в землю и соединенных с наземными металлоконструкциями средств обработки информации;

• сеточных заземлителей — контур (сетка), изготовленный из элементов с высокой электропроводностью и погруженных в землю, служит в качестве дополнения к заземляющим стержням.

Сопротивление заземления определяется главным образом сопротивлением растекания тока в земле. Величину этого сопротивления можно значительно понизить за счет уменьшения переходного сопротивления между заземлителем и почвой, тщательной очисткой перед укладкой поверхности заземлителя и утрамбовкой вокруг него почвы, а также подсыпкой поваренной соли. Таким образом, величина сопротивления заземления будет в основном определяться сопротивлением грунта.Удельное сопротивление различных грунтов (т.е. электрическое сопротивление 1 куб.см грунта) зависит от влажности почвы, ее состава, плотности, температуры и пр. И колеблется в очень широких пределах. Хорошо проводящие грунты теряют свои свойства при отсутствии влаги. Для большинства грунтов 30% содержания влаги достаточно для обеспечения малого сопротивления.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.)