АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Связь между непрерывностью и дифференцируемостью

Читайте также:
  1. A) Прямая зависимость между ценой и объемом предложения.
  2. III Угол между прямой и плоскостью.
  3. III. Интервью международного тренера
  4. III. ПРОМЕЖУТОЧНЫЕ СОСТОЯНИЯ МЕЖДУ ЗДОРОВЬЕМ И БОЛЕЗНЬЮ
  5. IV Международную научную конференцию
  6. S: Установите соответствие между категориями мобильности и характеризующими их признаками.
  7. S: Установите соответствие между типом общества и экономическим развитием данного общества.
  8. S: Установить соответствие между типами общества и их характеристиками.
  9. X. Международный комитет
  10. АКТ О ПРЕДОТВРАЩЕНИИ НЕУДОБСТВ, ПРОИСХОДЯЩИХ ВСЛЕДСТВИЕ ДОЛГОВРЕМЕННЫХ ПРОМЕЖУТКОВ МЕЖДУ СОЗЫВАМИ ПАРЛАМЕНТОВ (трехгодичный акт) 15 февраля 1641 г.
  11. Анатомия и физиология как науки, их взаимосвязь между ними.
  12. Артерии. Морфо-функциональная характеристика. Классификация, развитие, строение, функция артерий. Взаимосвязь структуры артерий и гемодинамических условий. Возрастные изменения.

Теорема. Если функция у=f(x) дифференцируема в точке , то она в ней непрерывна.

 

Доказательство. Функция у=f(x) дифференцируема в точке ,следовательно существует:

В этом случае ,откуда получаем

,

Следовательно ,

Т.е у=f(x) непрерывна в точке .

Таким образом, дифференцируемость функции есть достаточное условие непрерывности функции (из дифференцируемости функции следует её непрерывность).

Обратное утверждение неверно, то есть из непрерывности не вытекает дифференцируемость функции.

Например, у=|х|. (Рис.7.2.3)

 

Рис.7.2.3

Найдем .

 

Если >0, то

 

Если <0,то .

не существует.

Функция у= в точке х=0 непрерывна, но не дифференцируема (нет единственной касательной). Непрерывность- необходимое, но не достаточное условие дифференцируемости.

 

 

Рис 7.1.4

 

Функции, представленные на рис 7.1.4 не дифференцируемы, в точках хотя и непрерывны.

Условие дифференцируемости соответствует условию гладкости кривой.


1 | 2 | 3 | 4 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)