|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Условные развертки неразвертывающихся поверхностейЛекция № 7, 8 Развертки. План: Развертки гранных поверхностей Приближенные развертки развертывающихся поверхностей Условные развертки неразвертывающихся поверхностей Определение. Если поверхность, представляемую в виде тонкой, гибкой и нерастяжимой пленки, можно путем изгибания совместить с плоскостью без разрывов и складок, то поверхность, обладающая этим свойством, называется развертывающейся, а фигура, полученная в результате совмещения поверхности с плоскостью, называется разверткой. В математике доказано, что к развертывающимся относятся лишь три группы линейчатых поверхностей: конические, цилиндрические и торсовые (поверхности касательных к пространственной кривой). У этих поверхностей вдоль каждой прямолинейной образующей существует единственная касательная плоскость, у остальных линейчатых поверхностей вдоль образующей прямой существует бесконечное множество таких плоскостей. Изгибание поверхности на плоскость приводит к соответствию, устанавливаемому между множеством точек поверхности и множеством точек ее развертки. Это соответствие обладает следующими свойствами: 1) точке поверхности соответствует единственная точка развертки и наоборот; 2) длины соответственных линий поверхности и ее развертки равны; 3) углы, образованные линиями на поверхности, равны углам, образованным соответствующими линиями на развертке; 4) площади соответственных фигур на поверхности и на развертке равны.
Из приведенных свойств вытекают следствия: 1) прямая линия поверхности преобразуется в прямую линию развертки; 2) параллельные линии поверхности преобразуются в параллельные прямые ее развертки. Для развертывающихся линейчатых поверхностей строятся графически приближенные развертки, поскольку в процессе построения развертки эти поверхности заменяются (аппроксимируются) вписанными или описанными многогранными поверхностями. Точные развертки аппроксимирующих многогранных поверхностей принимаются за приближенные развертки развертывающихся поверхностей. Для поверхностей, которые не являются развертывающимися, строятся условные развертки по следующей схеме: НП⇒ РП⇒ ГП∼ ТР, где НП – не развертывающая поверхность, РП – развертывающаяся поверхность, ГП – гранная поверхность, ТР – точная развертка, ⇒ – этап аппроксимации предыдущей поверхности последующей. Поскольку в результате последовательных аппроксимаций исходная поверхность заменяется гранной, то рассмотрим вначале построения точных разверток гранных поверхностей. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |