|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Графическое представление уравнения парной линейной регрессии
Эмпирические ряды регрессии Y по Х и Х по Y изображаются в виде линейного графика, при построении которого наиболее точным является использование способа наименьших квадратов, предложенного в 1806 г. К. Гауссом и независимо от него А. Лежандром. В основу этого способа положена теорема, согласно которой сумма квадратов отклонений вариант (xi) от средней арифметической () есть величина наименьшая, т. е. . Отсюда и название метода, который нашел широкое применение не только в биологии, но и в технике. Мы уже говорили об этом методе и применяли его, когда находили параметры а и b линейной регрессии, отыскивая эмпирическое уравнение. При графическом изображении эмпирического уравнения регрессии (например, показатели роста и веса 10 исследуемых), представленного на рисунке 2.2 используется следующая последовательность: Определив форму и направление взаимосвязи между эмпирическими данными на основе данных расчета нормированного коэффициента корреляции, производят расчет уравнений регресиии (прямого и обратного) по формуле (2.13). Подставляя в конечный вид уравнений, выражающих зависимость между переменными величинами Y и X, эмпирические данные xi и yi находят координаты точек линий регрессии для усредненных значений yx и xy. На графике, выполненном в прямоугольной системе координат, на оси x откладывают значения переменных xi, на оси у – значения yi и отмечают точками рассчитанные координаты линий регрессии для усредненных значений yx и xy (рис.2.2). Две линии регрессии на графике пересекаются в точке М с координатами средних значений показателей xi и yi.
Рис.2.2. Графическое изображение эмпирического уравнения регрессии.
График линий регрессии отражает ряды теоретически ожидаемых значений функции по известным значениям аргумента. При этом, чем сильнее взаимосвязь между величинами xi и yi, тем меньше угол между линиями регрессии. При r = линии уравнения регрессии либо совпадают, либо расположены параллельно, так как корреляционная зависимость между признаками в этом случае переходит в функциональную. И, наоборот, чем слабее зависимость между признаками, тем больше угол между линиями на графике. При r = 0 линии регрессии расположены перпендикулярно. корреляционный уравнение линейный регрессия Заключение
Наиболее сложным этапом, завершающим регрессионный анализ, является интерпретация полученных результатов, т.е. перевод их с языка статистики и математики на язык экономики. Интерпретация моделей регрессии осуществляется методами той отрасли знаний, к которой относятся исследуемые явления. Всякая интерпретация начинается со статистической оценки уравнения регрессии в целом и оценки значимости входящих в модель факторных признаков, т.е. с изучения, как они влияют на величину результативного признака. Чем больше величина коэффициента регрессии, тем значительнее влияние данного признака на моделируемую обработку биржевых ставок. Особое значение при этом имеет знак перед коэффициентом регрессии. Знаки коэффициентов регрессии говорят о характере влияния на результативный признак статистической обработки биржевых ставок. Если факторный признак имеет плюс, то с увеличением данного фактора результативный признак возрастает; если факторный признак со знаком минус, то с его увеличением результативный признак уменьшается. Интерпретация этих знаков полностью определяется социально-экономическим содержанием моделируемого признака. Если его величина изменяется в сторону увеличения, то плюсовые знаки факторных признаков имеют положительное влияние. Если экономическая теория подсказывает, что факторный признак должен иметь положительное значение, а он со знаком минус, то необходимо проверить расчеты параметров уравнения регрессии. Корреляционный и регрессионный анализ позволяет определить зависимость между факторами, а так же проследить влияние задействованных факторов. Эти показатели имеют широкое применение в обработке статистических данных для достижения наилучших показателей биржевых ставок. Список литературы
1. С.А.Айвазян, И.С. Енюков, Л.Д. Мешалкин «Прикладная статистика. Основы моделирования и первичная обработка данных». Финансы и статистика, 1983 2. В.Н.Востров, П.А. Кузнецов «Математические методы обработки экспериментальных данных». Издательство СПбГПУ 2002 3. В.А. Колемаев, О.В. Староверов, В.Б. Турундаевский «Теория вероятностей и математическая статистика»/ М., 1991. 4. «Теория Статистики» под редакцией Р.А. Шмойловой/ «ФиС», 1998. 5. А.А. Френкель, Е.В. Адамова «Корреляционно регрессионный анализ в экономических приложениях»/ М., 1987. 6. А.Н. Кленин, К.К. Шевченко «Математическая статистика для экономистов-статистиков»/ М., 1990 Размещено на Allbest.ru Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |